add XGBoost to list of available methods #189
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
on: | |
push: | |
branches: | |
- main | |
paths: | |
- 'flexynesis/**' | |
- '.github/workflows/**' | |
- './spec-file.txt' | |
- './pyproject.toml' | |
- './manifest.scm' | |
- './guix.scm' | |
jobs: | |
run_package: | |
runs-on: ubuntu-latest | |
steps: | |
- name: Checkout repository | |
uses: actions/checkout@v2 | |
- name: Set up Python | |
uses: actions/setup-python@v2 | |
with: | |
python-version: '3.11' | |
- name: Set up Miniconda | |
uses: conda-incubator/setup-miniconda@v2 | |
with: | |
auto-update-conda: true | |
python-version: '3.11' | |
- name: Cache Conda environment | |
uses: actions/cache@v2 | |
with: | |
path: ~/miniconda/envs | |
key: ${{ runner.os }}-conda-${{ hashFiles('spec-file.txt') }} | |
restore-keys: | | |
${{ runner.os }}-conda- | |
- name: Create environment with dependencies | |
shell: bash -l {0} | |
run: | | |
conda create --name my_env --file spec-file.txt | |
conda activate my_env | |
- name: Install my package from source | |
shell: bash -l {0} | |
run: | | |
conda activate my_env | |
pip install -e . | |
- name: Download dataset1 | |
run: | | |
curl -L -o dataset1.tgz https://bimsbstatic.mdc-berlin.de/akalin/buyar/flexynesis-benchmark-datasets/dataset1.tgz | |
tar -xzvf dataset1.tgz | |
- name: Download stringdb data | |
run: | | |
wget https://stringdb-downloads.org/download/protein.links.v12.0/9606.protein.links.v12.0.txt.gz | |
gzip -cd 9606.protein.links.v12.0.txt.gz > dataset1/9606.protein.links.v12.0.txt | |
wget https://stringdb-downloads.org/download/protein.aliases.v12.0/9606.protein.aliases.v12.0.txt.gz | |
gzip -cd 9606.protein.aliases.v12.0.txt.gz > dataset1/9606.protein.aliases.v12.0.txt | |
- name: Download dataset2 | |
run: | | |
curl -L -o dataset2.tgz https://bimsbstatic.mdc-berlin.de/akalin/buyar/flexynesis-benchmark-datasets/dataset2.tgz | |
tar -xzvf dataset2.tgz | |
- name: Download LGG_GBM_dataset | |
run: | | |
curl -L -o lgggbm_tcga_pub_processed.tgz https://bimsbstatic.mdc-berlin.de/akalin/buyar/flexynesis-benchmark-datasets/lgggbm_tcga_pub_processed.tgz | |
tar -xzvf lgggbm_tcga_pub_processed.tgz | |
- name: Run DirectPred | |
shell: bash -l {0} | |
run: | | |
conda activate my_env | |
flexynesis --data_path dataset1 --model_class DirectPred --target_variables Erlotinib --fusion_type early --hpo_iter 1 --features_min 50 --features_top_percentile 5 --log_transform False --data_types gex,cnv --outdir . --prefix erlotinib_direct --early_stop_patience 3 --use_loss_weighting False | |
- name: Run DirectPred_TestSurvival | |
shell: bash -l {0} | |
run: | | |
conda activate my_env | |
flexynesis --data_path lgggbm_tcga_pub_processed --model_class DirectPred --target_variables STUDY --fusion_type intermediate --hpo_iter 1 --features_min 50 --features_top_percentile 5 --log_transform False --data_types mut,cna --outdir . --prefix lgg_surv --early_stop_patience 3 --use_loss_weighting False --surv_event_var OS_STATUS --surv_time_var OS_MONTHS | |
- name: Run supervised_vae | |
shell: bash -l {0} | |
run: | | |
conda activate my_env | |
flexynesis --data_path dataset1 --model_class supervised_vae --target_variables Erlotinib,Crizotinib --fusion_type early --hpo_iter 1 --features_min 50 --features_top_percentile 5 --log_transform False --data_types gex,cnv --outdir . --prefix erlotinib_svae --early_stop_patience 3 --use_loss_weighting True | |
- name: Run CrossModalPred | |
shell: bash -l {0} | |
run: | | |
conda activate my_env | |
flexynesis --data_path dataset1 --model_class CrossModalPred --target_variables Erlotinib --fusion_type intermediate --hpo_iter 1 --features_min 50 --features_top_percentile 5 --log_transform False --data_types gex,cnv --input_layers gex --output_layers cnv --outdir . --prefix erlotinib_crossmodal --early_stop_patience 3 --use_loss_weighting True | |
- name: Run MultiTripletNetwork | |
shell: bash -l {0} | |
run: | | |
conda activate my_env | |
flexynesis --data_path dataset2 --model_class MultiTripletNetwork --target_variables y --fusion_type early --hpo_iter 1 --features_min 50 --features_top_percentile 5 --log_transform False --data_types gex,meth --outdir . --prefix msi_triplet --early_stop_patience 3 | |
- name: Run GNN | |
shell: bash -l {0} | |
run: | | |
conda activate my_env | |
flexynesis --data_path dataset1 --model_class GNN --target_variables Erlotinib --fusion_type intermediate --hpo_iter 1 --features_top_percentile 10 --log_transform False --data_types gex --outdir . --prefix erlotinib_direct --early_stop_patience 3 --use_loss_weighting False --subsample 50 |