Skip to content

add XGBoost to list of available methods #189

add XGBoost to list of available methods

add XGBoost to list of available methods #189

Workflow file for this run

on:
push:
branches:
- main
paths:
- 'flexynesis/**'
- '.github/workflows/**'
- './spec-file.txt'
- './pyproject.toml'
- './manifest.scm'
- './guix.scm'
jobs:
run_package:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: '3.11'
- name: Set up Miniconda
uses: conda-incubator/setup-miniconda@v2
with:
auto-update-conda: true
python-version: '3.11'
- name: Cache Conda environment
uses: actions/cache@v2
with:
path: ~/miniconda/envs
key: ${{ runner.os }}-conda-${{ hashFiles('spec-file.txt') }}
restore-keys: |
${{ runner.os }}-conda-
- name: Create environment with dependencies
shell: bash -l {0}
run: |
conda create --name my_env --file spec-file.txt
conda activate my_env
- name: Install my package from source
shell: bash -l {0}
run: |
conda activate my_env
pip install -e .
- name: Download dataset1
run: |
curl -L -o dataset1.tgz https://bimsbstatic.mdc-berlin.de/akalin/buyar/flexynesis-benchmark-datasets/dataset1.tgz
tar -xzvf dataset1.tgz
- name: Download stringdb data
run: |
wget https://stringdb-downloads.org/download/protein.links.v12.0/9606.protein.links.v12.0.txt.gz
gzip -cd 9606.protein.links.v12.0.txt.gz > dataset1/9606.protein.links.v12.0.txt
wget https://stringdb-downloads.org/download/protein.aliases.v12.0/9606.protein.aliases.v12.0.txt.gz
gzip -cd 9606.protein.aliases.v12.0.txt.gz > dataset1/9606.protein.aliases.v12.0.txt
- name: Download dataset2
run: |
curl -L -o dataset2.tgz https://bimsbstatic.mdc-berlin.de/akalin/buyar/flexynesis-benchmark-datasets/dataset2.tgz
tar -xzvf dataset2.tgz
- name: Download LGG_GBM_dataset
run: |
curl -L -o lgggbm_tcga_pub_processed.tgz https://bimsbstatic.mdc-berlin.de/akalin/buyar/flexynesis-benchmark-datasets/lgggbm_tcga_pub_processed.tgz
tar -xzvf lgggbm_tcga_pub_processed.tgz
- name: Run DirectPred
shell: bash -l {0}
run: |
conda activate my_env
flexynesis --data_path dataset1 --model_class DirectPred --target_variables Erlotinib --fusion_type early --hpo_iter 1 --features_min 50 --features_top_percentile 5 --log_transform False --data_types gex,cnv --outdir . --prefix erlotinib_direct --early_stop_patience 3 --use_loss_weighting False
- name: Run DirectPred_TestSurvival
shell: bash -l {0}
run: |
conda activate my_env
flexynesis --data_path lgggbm_tcga_pub_processed --model_class DirectPred --target_variables STUDY --fusion_type intermediate --hpo_iter 1 --features_min 50 --features_top_percentile 5 --log_transform False --data_types mut,cna --outdir . --prefix lgg_surv --early_stop_patience 3 --use_loss_weighting False --surv_event_var OS_STATUS --surv_time_var OS_MONTHS
- name: Run supervised_vae
shell: bash -l {0}
run: |
conda activate my_env
flexynesis --data_path dataset1 --model_class supervised_vae --target_variables Erlotinib,Crizotinib --fusion_type early --hpo_iter 1 --features_min 50 --features_top_percentile 5 --log_transform False --data_types gex,cnv --outdir . --prefix erlotinib_svae --early_stop_patience 3 --use_loss_weighting True
- name: Run CrossModalPred
shell: bash -l {0}
run: |
conda activate my_env
flexynesis --data_path dataset1 --model_class CrossModalPred --target_variables Erlotinib --fusion_type intermediate --hpo_iter 1 --features_min 50 --features_top_percentile 5 --log_transform False --data_types gex,cnv --input_layers gex --output_layers cnv --outdir . --prefix erlotinib_crossmodal --early_stop_patience 3 --use_loss_weighting True
- name: Run MultiTripletNetwork
shell: bash -l {0}
run: |
conda activate my_env
flexynesis --data_path dataset2 --model_class MultiTripletNetwork --target_variables y --fusion_type early --hpo_iter 1 --features_min 50 --features_top_percentile 5 --log_transform False --data_types gex,meth --outdir . --prefix msi_triplet --early_stop_patience 3
- name: Run GNN
shell: bash -l {0}
run: |
conda activate my_env
flexynesis --data_path dataset1 --model_class GNN --target_variables Erlotinib --fusion_type intermediate --hpo_iter 1 --features_top_percentile 10 --log_transform False --data_types gex --outdir . --prefix erlotinib_direct --early_stop_patience 3 --use_loss_weighting False --subsample 50