Skip to content

Update choices list for model_class arg (#27) #83

Update choices list for model_class arg (#27)

Update choices list for model_class arg (#27) #83

Workflow file for this run

name: Run Benchmarks
on:
push:
branches:
- main
paths:
- 'flexynesis/**'
- '.github/workflows/**'
- './spec-file.txt'
- './pyproject.toml'
- './manifest.scm'
- './guix.scm'
jobs:
run_package:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: '3.9'
- name: Set up Miniconda
uses: conda-incubator/setup-miniconda@v2
with:
auto-update-conda: true
python-version: '3.9'
- name: Cache Conda environment
uses: actions/cache@v2
with:
path: ~/miniconda/envs
key: ${{ runner.os }}-conda-${{ hashFiles('spec-file.txt') }}
restore-keys: |
${{ runner.os }}-conda-
- name: Create environment with dependencies
shell: bash -l {0}
run: |
conda create --name my_env --file spec-file.txt
conda activate my_env
- name: Install my package from source
shell: bash -l {0}
run: |
conda activate my_env
pip install -e .
# NOTE: Install pytorch geometric via pip
- name: Install pytorch-geometric
shell: bash -l {0}
run: |
conda activate my_env
pip install torch_geometric
- name: Download dataset1
run: |
curl -L -o dataset1.tgz https://bimsbstatic.mdc-berlin.de/akalin/buyar/flexynesis-benchmark-datasets/dataset1.tgz
tar -xzvf dataset1.tgz
- name: Download stringdb data
run: |
wget https://stringdb-downloads.org/download/protein.links.v12.0/9606.protein.links.v12.0.txt.gz
gzip -cd 9606.protein.links.v12.0.txt.gz > dataset1/9606.protein.links.v12.0.txt
wget https://stringdb-downloads.org/download/protein.aliases.v12.0/9606.protein.aliases.v12.0.txt.gz
gzip -cd 9606.protein.aliases.v12.0.txt.gz > dataset1/9606.protein.aliases.v12.0.txt
- name: Download dataset2
run: |
curl -L -o dataset2.tgz https://bimsbstatic.mdc-berlin.de/akalin/buyar/flexynesis-benchmark-datasets/dataset2.tgz
tar -xzvf dataset2.tgz
- name: Run DirectPred
shell: bash -l {0}
run: |
conda activate my_env
flexynesis --data_path dataset1 --model_class DirectPred --target_variables Erlotinib --batch_variables Crizotinib --fusion_type early --hpo_iter 1 --features_min 500 --features_top_percentile 20 --log_transform False --data_types gex,cnv --outdir . --prefix erlotinib_direct --early_stop_patience 10 --use_loss_weighting False
- name: Run supervised_vae
shell: bash -l {0}
run: |
conda activate my_env
flexynesis --data_path dataset1 --model_class supervised_vae --target_variables Erlotinib,Crizotinib --fusion_type early --hpo_iter 1 --features_min 500 --features_top_percentile 20 --log_transform False --data_types gex,cnv --outdir . --prefix erlotinib_svae --early_stop_patience 10 --use_loss_weighting True
- name: Run MultiTripletNetwork
shell: bash -l {0}
run: |
conda activate my_env
flexynesis --data_path dataset2 --model_class MultiTripletNetwork --target_variables y --fusion_type early --hpo_iter 1 --features_min 500 --features_top_percentile 20 --log_transform False --data_types gex,meth --outdir . --prefix msi_triplet
- name: Run DirectPredGCNN
shell: bash -l {0}
run: |
conda activate my_env
flexynesis --data_path dataset1 --model_class DirectPredGCNN --target_variables Erlotinib --batch_variables Crizotinib --fusion_type early --hpo_iter 1 --features_min 500 --features_top_percentile 20 --log_transform False --data_types gex,cnv --outdir . --prefix erlotinib_direct --early_stop_patience 10 --use_loss_weighting False