Call all LLM APIs using the OpenAI format [Bedrock, Huggingface, Cohere, TogetherAI, Azure, OpenAI, etc.]
LiteLLM manages
- Translating inputs to the provider's completion and embedding endpoints
- Guarantees consistent output, text responses will always be available at
['choices'][0]['message']['content']
- Exception mapping - common exceptions across providers are mapped to the OpenAI exception types.
10/05/2023: LiteLLM is adopting Semantic Versioning for all commits. Learn more
10/16/2023: Self-hosted OpenAI-proxy server Learn more
Usage (Docs)
pip install litellm
from litellm import completion
import os
## set ENV variables
os.environ["OPENAI_API_KEY"] = "your-openai-key"
os.environ["COHERE_API_KEY"] = "your-cohere-key"
messages = [{ "content": "Hello, how are you?","role": "user"}]
# openai call
response = completion(model="gpt-3.5-turbo", messages=messages)
# cohere call
response = completion(model="command-nightly", messages=messages)
print(response)
Streaming (Docs)
liteLLM supports streaming the model response back, pass stream=True
to get a streaming iterator in response.
Streaming is supported for all models (Bedrock, Huggingface, TogetherAI, Azure, OpenAI, etc.)
response = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
for chunk in response:
print(chunk['choices'][0]['delta'])
# claude 2
result = completion('claude-2', messages, stream=True)
for chunk in result:
print(chunk['choices'][0]['delta'])
Supported Provider (Docs)
Provider | Completion | Streaming | Async Completion | Async Streaming |
---|---|---|---|---|
openai | β | β | β | β |
cohere | β | β | β | β |
anthropic | β | β | β | β |
replicate | β | β | β | β |
huggingface | β | β | β | β |
together_ai | β | β | β | β |
openrouter | β | β | β | β |
vertex_ai | β | β | β | β |
palm | β | β | β | β |
ai21 | β | β | β | β |
baseten | β | β | β | β |
azure | β | β | β | β |
sagemaker | β | β | β | β |
bedrock | β | β | β | β |
vllm | β | β | β | β |
nlp_cloud | β | β | β | β |
aleph alpha | β | β | β | β |
petals | β | β | β | β |
ollama | β | β | β | β |
deepinfra | β | β | β | β |
Logging Observability - Log LLM Input/Output (Docs)
LiteLLM exposes pre defined callbacks to send data to LLMonitor, Langfuse, Helicone, Promptlayer, Traceloop, Slack
from litellm import completion
## set env variables for logging tools
os.environ["PROMPTLAYER_API_KEY"] = "your-promptlayer-key"
os.environ["LLMONITOR_APP_ID"] = "your-llmonitor-app-id"
os.environ["OPENAI_API_KEY"]
# set callbacks
litellm.success_callback = ["promptlayer", "llmonitor"] # log input/output to promptlayer, llmonitor, supabase
#openai call
response = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hi π - i'm openai"}])
To contribute: Clone the repo locally -> Make a change -> Submit a PR with the change.
Here's how to modify the repo locally: Step 1: Clone the repo
git clone https://github.com/BerriAI/litellm.git
Step 2: Navigate into the project, and install dependencies:
cd litellm
poetry install
Step 3: Test your change:
cd litellm/tests # pwd: Documents/litellm/litellm/tests
pytest .
Step 4: Submit a PR with your changes! π
- push your fork to your GitHub repo
- submit a PR from there
- Schedule Demo π
- Community Discord π
- Our numbers π +1 (770) 8783-106 / β+1 (412) 618-6238β¬
- Our emails βοΈ [email protected] / [email protected]
- Need for simplicity: Our code started to get extremely complicated managing & translating calls between Azure, OpenAI and Cohere.