Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ENH: Add slice-by-slice processing option to Isolate Largest Feature. #1169

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions src/Plugins/SimplnxCore/docs/IdentifySampleFilter.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,8 @@ If *Fill Holes* is set to *true*:

*Note:* if there are in fact "holes" in the sample, then this **Filter** will "close" them (if *Fill Holes* is set to true) by calling all the **Cells** "inside" the sample *good*. If the user wants to reidentify those holes, then reuse the threshold **Filter** with the criteria of *GoodVoxels = 1* and whatever original criteria identified the "holes", as this will limit applying those original criteria to within the sample and not the outer border region.

*Additional Note:* Only completely water-tight, internal holes within the sample are addressed when *Fill Holes* is enabled. To fill in a contiguous group of good cells that includes holes located along the outer edge of the sample, try enabling *Process Data Slice-By-Slice*. For each slice of the chosen plane, this will search for the largest contiguous set of *good* **Cells**, set all other *good* **Cells** to be *bad* **Cells**, and (if *Fill Holes* is enabled) fill all water-tight holes PER SLICE instead of the whole 3D volume at once. This option can be used to allow non water-tight holes to be filled without also accidentally filling the surrounding overscan area.

| Name | Description |
|------|-------------|
|![Small IN100 IPF Map](Images/Small_IN100.png) | Good dataset to use this filter |
Expand Down
250 changes: 233 additions & 17 deletions src/Plugins/SimplnxCore/src/SimplnxCore/Filters/IdentifySampleFilter.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
#include "simplnx/DataStructure/Geometry/ImageGeom.hpp"
#include "simplnx/Parameters/ArraySelectionParameter.hpp"
#include "simplnx/Parameters/BoolParameter.hpp"
#include "simplnx/Parameters/ChoicesParameter.hpp"
#include "simplnx/Parameters/DataGroupSelectionParameter.hpp"
#include "simplnx/Parameters/GeometrySelectionParameter.hpp"
#include "simplnx/Utilities/FilterUtilities.hpp"
Expand Down Expand Up @@ -46,11 +47,8 @@ struct IdentifySampleFunctor
std::vector<bool> checked(totalPoints, false);
std::vector<bool> sample(totalPoints, false);
int64 biggestBlock = 0;
usize count = 0;
int32 good = 0;

int64 neighbor = 0;
int64 column = 0, row = 0, plane = 0;
int64 index = 0;

// In this loop over the data we are finding the biggest contiguous set of GoodVoxels and calling that the 'sample' All GoodVoxels that do not touch the 'sample'
// are flipped to be called 'bad' voxels or 'not sample'
Expand All @@ -70,16 +68,16 @@ struct IdentifySampleFunctor
if(!checked[i] && goodVoxels.getValue(i))
{
currentVList.push_back(i);
count = 0;
usize count = 0;
while(count < currentVList.size())
{
index = currentVList[count];
column = index % xp;
row = (index / xp) % yp;
plane = index / (xp * yp);
int64 index = currentVList[count];
int64 column = index % xp;
int64 row = (index / xp) % yp;
int64 plane = index / (xp * yp);
for(int32 j = 0; j < 6; j++)
{
good = 1;
int32 good = 1;
neighbor = index + neighborPoints[j];
if(j == 0 && plane == 0)
{
Expand Down Expand Up @@ -156,21 +154,21 @@ struct IdentifySampleFunctor
if(!checked[i] && !goodVoxels.getValue(i))
{
currentVList.push_back(i);
count = 0;
usize count = 0;
touchesBoundary = false;
while(count < currentVList.size())
{
index = currentVList[count];
column = index % xp;
row = (index / xp) % yp;
plane = index / (xp * yp);
int64 index = currentVList[count];
int64 column = index % xp;
int64 row = (index / xp) % yp;
int64 plane = index / (xp * yp);
if(column == 0 || column == (xp - 1) || row == 0 || row == (yp - 1) || plane == 0 || plane == (zp - 1))
{
touchesBoundary = true;
}
for(int32 j = 0; j < 6; j++)
{
good = 1;
int32 good = 1;
neighbor = index + neighborPoints[j];
if(j == 0 && plane == 0)
{
Expand Down Expand Up @@ -218,6 +216,200 @@ struct IdentifySampleFunctor
checked.clear();
}
};

struct IdentifySampleSliceBySliceFunctor
{
enum class Plane
{
XY,
XZ,
YZ
};

template <typename T>
void operator()(const ImageGeom* imageGeom, IDataArray* goodVoxelsPtr, bool fillHoles, Plane plane)
{
auto& goodVoxels = goodVoxelsPtr->template getIDataStoreRefAs<AbstractDataStore<T>>();

SizeVec3 uDims = imageGeom->getDimensions();
const int64 dimX = static_cast<int64>(uDims[0]);
const int64 dimY = static_cast<int64>(uDims[1]);
const int64 dimZ = static_cast<int64>(uDims[2]);

int64 planeDim1, planeDim2, fixedDim;
int64 stride1, stride2, fixedStride;

switch(plane)
{
case Plane::XY:
planeDim1 = dimX;
planeDim2 = dimY;
fixedDim = dimZ;
stride1 = 1;
stride2 = dimX;
fixedStride = dimX * dimY;
break;

case Plane::XZ:
planeDim1 = dimX;
planeDim2 = dimZ;
fixedDim = dimY;
stride1 = 1;
stride2 = dimX * dimY;
fixedStride = dimX;
break;

case Plane::YZ:
planeDim1 = dimY;
planeDim2 = dimZ;
fixedDim = dimX;
stride1 = dimX;
stride2 = dimX * dimY;
fixedStride = 1;
break;
}

for(int64 fixedIdx = 0; fixedIdx < fixedDim; ++fixedIdx) // Process each slice
{
std::vector<bool> checked(planeDim1 * planeDim2, false);
std::vector<bool> sample(planeDim1 * planeDim2, false);
std::vector<int64> currentVList;
int64 biggestBlock = 0;

// Identify the largest contiguous set of good voxels in the slice
for(int64 p2 = 0; p2 < planeDim2; ++p2)
{
for(int64 p1 = 0; p1 < planeDim1; ++p1)
{
int64 planeIndex = p2 * planeDim1 + p1;
int64 globalIndex = fixedIdx * fixedStride + p2 * stride2 + p1 * stride1;

if(!checked[planeIndex] && goodVoxels.getValue(globalIndex))
{
currentVList.push_back(planeIndex);
int64 count = 0;

while(count < currentVList.size())
{
int64 localIdx = currentVList[count];
int64 localP1 = localIdx % planeDim1;
int64 localP2 = localIdx / planeDim1;

for(int j = 0; j < 4; ++j)
{
int64 dp1[4] = {0, 0, -1, 1};
int64 dp2[4] = {-1, 1, 0, 0};

int64 neighborP1 = localP1 + dp1[j];
int64 neighborP2 = localP2 + dp2[j];

if(neighborP1 >= 0 && neighborP1 < planeDim1 && neighborP2 >= 0 && neighborP2 < planeDim2)
{
int64 neighborIdx = neighborP2 * planeDim1 + neighborP1;
int64 globalNeighborIdx = fixedIdx * fixedStride + neighborP2 * stride2 + neighborP1 * stride1;

if(!checked[neighborIdx] && goodVoxels.getValue(globalNeighborIdx))
{
currentVList.push_back(neighborIdx);
checked[neighborIdx] = true;
}
}
}
count++;
}

if(static_cast<int64>(currentVList.size()) > biggestBlock)
{
biggestBlock = currentVList.size();
sample.assign(planeDim1 * planeDim2, false);
for(int64 idx : currentVList)
{
sample[idx] = true;
}
}
currentVList.clear();
}
}
}

for(int64 p2 = 0; p2 < planeDim2; ++p2)
{
for(int64 p1 = 0; p1 < planeDim1; ++p1)
{
int64 planeIndex = p2 * planeDim1 + p1;
int64 globalIndex = fixedIdx * fixedStride + p2 * stride2 + p1 * stride1;

if(!sample[planeIndex])
{
goodVoxels.setValue(globalIndex, false);
}
}
}

if(fillHoles)
{
for(int64 p2 = 0; p2 < planeDim2; ++p2)
{
for(int64 p1 = 0; p1 < planeDim1; ++p1)
{
int64 planeIndex = p2 * planeDim1 + p1;
int64 globalIndex = fixedIdx * fixedStride + p2 * stride2 + p1 * stride1;

if(!checked[planeIndex] && !goodVoxels.getValue(globalIndex))
{
currentVList.push_back(planeIndex);
int64 count = 0;
bool touchesBoundary = false;

while(count < currentVList.size())
{
int64 localIdx = currentVList[count];
int64 localP1 = localIdx % planeDim1;
int64 localP2 = localIdx / planeDim1;

if(localP1 == 0 || localP1 == planeDim1 - 1 || localP2 == 0 || localP2 == planeDim2 - 1)
{
touchesBoundary = true;
}

for(int j = 0; j < 4; ++j)
{
int64 dp1[4] = {0, 0, -1, 1};
int64 dp2[4] = {-1, 1, 0, 0};

int64 neighborP1 = localP1 + dp1[j];
int64 neighborP2 = localP2 + dp2[j];

if(neighborP1 >= 0 && neighborP1 < planeDim1 && neighborP2 >= 0 && neighborP2 < planeDim2)
{
int64 neighborIdx = neighborP2 * planeDim1 + neighborP1;
int64 globalNeighborIdx = fixedIdx * fixedStride + neighborP2 * stride2 + neighborP1 * stride1;

if(!checked[neighborIdx] && !goodVoxels.getValue(globalNeighborIdx))
{
currentVList.push_back(neighborIdx);
checked[neighborIdx] = true;
}
}
}
count++;
}

if(!touchesBoundary)
{
for(int64 idx : currentVList)
{
goodVoxels.setValue(fixedIdx * fixedStride + idx, true);
}
}
currentVList.clear();
}
}
}
}
}
}
};
} // namespace

//------------------------------------------------------------------------------
Expand Down Expand Up @@ -257,11 +449,26 @@ Parameters IdentifySampleFilter::parameters() const

params.insertSeparator(Parameters::Separator{"Input Parameter(s)"});
params.insert(std::make_unique<BoolParameter>(k_FillHoles_Key, "Fill Holes in Largest Feature", "Whether to fill holes within sample after it is identified", true));
params.insertLinkableParameter(std::make_unique<BoolParameter>(k_SliceBySlice_Key, "Process Data Slice-By-Slice",
"Whether to identify the largest sample (and optionally fill holes) slice-by-slice. This option is useful if you have a sample that "
"is not water-tight and the holes open up to the overscan section, or if you have holes that sit on a boundary. The original "
"algorithm will not fill holes that have these characteristics, only holes that are completely enclosed by the sample and "
"water-tight. If you have holes that are not water-tight or sit on a boundary, choose this option and then pick the plane that will "
"allow the holes to be water-tight on each slice of that plane.",
false));
params.insert(
std::make_unique<ChoicesParameter>(k_SliceBySlicePlane_Key, "Slice-By-Slice Plane",
"Set the plane that the data will be processed slice-by-slice. For example, if you pick the XY plane, the data will be processed in the Z direction.", 0,
ChoicesParameter::Choices{"XY", "XZ", "YZ"}));

params.insert(std::make_unique<GeometrySelectionParameter>(k_SelectedImageGeometryPath_Key, "Image Geometry", "DataPath to the target ImageGeom", DataPath(),
GeometrySelectionParameter::AllowedTypes{IGeometry::Type::Image}));
params.insert(std::make_unique<ArraySelectionParameter>(k_MaskArrayPath_Key, "Mask Array", "DataPath to the mask array defining what is sample and what is not", DataPath(),
ArraySelectionParameter::AllowedTypes{nx::core::DataType::boolean, nx::core::DataType::uint8},
ArraySelectionParameter::AllowedComponentShapes{{1}}));

params.linkParameters(k_SliceBySlice_Key, k_SliceBySlicePlane_Key, true);

return params;
}

Expand Down Expand Up @@ -301,13 +508,22 @@ Result<> IdentifySampleFilter::executeImpl(DataStructure& dataStructure, const A
const std::atomic_bool& shouldCancel) const
{
const auto fillHoles = args.value<bool>(k_FillHoles_Key);
const auto sliceBySlice = args.value<bool>(k_SliceBySlice_Key);
const auto sliceBySlicePlane = static_cast<IdentifySampleSliceBySliceFunctor::Plane>(args.value<ChoicesParameter::ValueType>(k_SliceBySlicePlane_Key));
const auto imageGeomPath = args.value<DataPath>(k_SelectedImageGeometryPath_Key);
const auto goodVoxelsArrayPath = args.value<DataPath>(k_MaskArrayPath_Key);

auto* inputData = dataStructure.getDataAs<IDataArray>(goodVoxelsArrayPath);
const auto* imageGeom = dataStructure.getDataAs<ImageGeom>(imageGeomPath);

ExecuteDataFunction(IdentifySampleFunctor{}, inputData->getDataType(), imageGeom, inputData, fillHoles);
if(sliceBySlice)
{
ExecuteDataFunction(IdentifySampleSliceBySliceFunctor{}, inputData->getDataType(), imageGeom, inputData, fillHoles, sliceBySlicePlane);
}
else
{
ExecuteDataFunction(IdentifySampleFunctor{}, inputData->getDataType(), imageGeom, inputData, fillHoles);
}

return {};
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,8 @@ class SIMPLNXCORE_EXPORT IdentifySampleFilter : public IFilter

// Parameter Keys
static inline constexpr StringLiteral k_FillHoles_Key = "fill_holes";
static inline constexpr StringLiteral k_SliceBySlice_Key = "slice_by_slice";
static inline constexpr StringLiteral k_SliceBySlicePlane_Key = "slice_by_slice_plane_index";
static inline constexpr StringLiteral k_SelectedImageGeometryPath_Key = "input_image_geometry_path";
static inline constexpr StringLiteral k_MaskArrayPath_Key = "mask_array_path";

Expand Down
Loading