Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

DOC: Remove redundant sphinx directives duplicating type annotations #89

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion AutoscoperM/AutoscoperM.py
Original file line number Diff line number Diff line change
Expand Up @@ -1004,7 +1004,6 @@ def extractSubVolumeForVRG(
:param cameraDebugMode: Whether or not to keep the extracted volume in the scene, defaults to False

:return: tuple containing the extracted volume and the bounds of the volume
:rtype: tuple[vtk.vtkImageData, list[float]]
"""
mergedSegmentationNode = SubVolumeExtraction.mergeSegments(volumeNode, segmentationNode)
newVolumeNode = SubVolumeExtraction.extractSubVolume(
Expand Down
23 changes: 1 addition & 22 deletions AutoscoperM/AutoscoperMLib/RadiographGeneration.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,22 +74,12 @@ def generateNCameras(
Generate N cameras

:param N: Number of cameras to generate
:type N: int

:param bounds: Bounds of the volume
:type bounds: list[int]

:param offset: Offset from the volume. Defaults to 100.
:type offset: int

:param imageSize: Image size. Defaults to [512,512].
:type imageSize: list[int]

:param camDebugMode: Whether or not to show the cameras in the scene. Defaults to False.
:type camDebugMode: bool

:return: List of cameras
:rtype: list[Camera]
"""
# find the center of the bounds
center = [(bounds[0] + bounds[1]) / 2, (bounds[2] + bounds[3]) / 2, (bounds[4] + bounds[5]) / 2]
Expand Down Expand Up @@ -165,17 +155,12 @@ def generateCamerasFromMarkups(
Generate cameras from a markups fiducial node

:param fiduaicalNode: Markups fiducial node
:type fiduaicalNode: slicer.vtkMRMLMarkupsFiducialNode
:param volumeBounds: Bounds of the volume
:type volumeBounds: list[int]
:param clippingRange: Clipping range
:type clippingRange: tuple[int]
:param viewAngle: View angle
:type viewAngle: int
:param imageSize: Image size. Defaults to [512,512].
:type imageSize: list[int]
:param cameraDebug: Whether or not to show the cameras in the scene. Defaults to False.
:type cameraDebug: bool

:return: List of cameras
"""
center = [
Expand Down Expand Up @@ -210,16 +195,10 @@ def optimizeCameras(
Optimize the cameras by finding the N cameras with the best data intensity density.

:param cameras: Cameras
:type cameras: list[Camera]

:param cameraDir: Camera directory
:type cameraDir: str

:param nOptimizedCameras: Number of optimized cameras to find
:type nOptimizedCameras: int

:return: Optimized cameras
:rtype: list[Camera]
"""
import glob
import os
Expand Down
20 changes: 0 additions & 20 deletions TrackingEvaluation/TrackingEvaluationLib/data.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,10 +11,8 @@ def loadTraAsSequence(data: np.ndarray) -> list[vtk.vtkMatrix4x4]:
Converts the tracking data to a list of vtkMatrix4x4.

:param data: The tracking data.
:type data: np.ndarray

:return: The tracking data as a sequence.
:rtype: list[vtk.vtkMatrix4x4]
"""
_, cols = data.shape

Expand Down Expand Up @@ -50,10 +48,8 @@ def tmpTFMLoader(
Loads a tfm file and returns the matrix.

:param fileName: The filename of the tfm file.
:type fileName: str

:return: The matrix from the tfm file.
:rtype: vtk.vtkMatrix4x4
"""
with open(fileName) as f:
lines = f.readlines()
Expand All @@ -73,9 +69,7 @@ class ModelData:
Class to store the model data.

:param modelFileName: The filename of the model.
:type modelFileName: str
:param groundTruthSequenceData: The ground truth sequence data.
:type groundTruthSequenceData: np.ndarray
"""

def __init__(self, modelFileName: str, groundTruthSequenceData: np.ndarray):
Expand Down Expand Up @@ -140,7 +134,6 @@ def loadUserTrackingSequence(self, userSequence: list[vtk.vtkMatrix4x4]):
Load the user tracking sequence.

:param userSequence: The user tracking sequence.
:type userSequence: list[vtk.vtkMatrix4x4]
"""
self.userSequence = userSequence

Expand All @@ -149,7 +142,6 @@ def updateTransform(self, index: int):
Update the transform of the model node.

:param index: The index of the transform.
:type index: int
"""
if self.userSequence is None:
slicer.util.errorDisplay("No user tracking data!")
Expand All @@ -168,11 +160,8 @@ def evaluateError(self, index: int, translationTol: float = 1.0, degreeTol: floa
in the correct position.

:param index: The index of the transform.
:type index: int
:param translationTol: The translation tolerance in mm.
:type translationTol: float
:param degreeTol: The rotation tolerance in degrees.
:type degreeTol: float
"""
if self.userSequence is None:
slicer.util.errorDisplay("No user tracking data!")
Expand Down Expand Up @@ -241,7 +230,6 @@ def setColor(self, rgb: tuple[float, float, float] = (1.0, 1.0, 1.0)):
Update the color of the model node.

:param rgb: The RGB color to set.
:type rgb: Tuple[float, float, float]
"""
self.userDisplayNode.SetColor(rgb[0], rgb[1], rgb[2])

Expand All @@ -250,7 +238,6 @@ def setGroundTruthVisible(self, visible: bool):
Hide or show the ground truth model node.

:param visible: whether the ground truth model node is visible or not.
:type visible: bool
"""
self.groundTruthDisplayNode.SetVisibility(visible)

Expand All @@ -260,9 +247,7 @@ class Scene:
Class to store the scene data.

:param sampleDataType: The sample data type.
:type sampleDataType: str
:param userSequenceFileName: The filename of the user sequence.
:type userSequenceFileName: str
"""

def __init__(self, sampleDataType: str, userSequenceFileName: str):
Expand Down Expand Up @@ -312,10 +297,8 @@ def _parseUserSequence(self, userSequenceFileName: str) -> list[int]:
Internal function to parse the user sequence.

:param userSequenceFileName: The filename of the user sequence.
:type userSequenceFileName: str

:return: List of indices that correspond to any models with Nan tracking values.
:rtype: list[int]
"""

if not os.path.exists(userSequenceFileName):
Expand Down Expand Up @@ -355,11 +338,8 @@ def updateTransforms(self, index: int, translationTol: float = 1.0, degreeTol: f
Update the transforms of the models and evaluate the error compared to the ground truth.

:param index: The index of the transform.
:type index: int
:param translationTol: The translation tolerance.
:type translationTol: float
:param degreeTol: The degree tolerance.
:type degreeTol: float
"""
self.currentFrame = index
for i, model in enumerate(self.models): # Probably want to make this multithreaded instead of sequential.
Expand Down
Loading