forked from alibaba/EasyCV
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'master' of github.com:alibaba/EasyCV
- Loading branch information
Showing
9 changed files
with
179 additions
and
21 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,114 @@ | ||
_base_ = ['./fcos.py', 'configs/base.py'] | ||
|
||
log_config = dict( | ||
interval=50, hooks=[ | ||
dict(type='TextLoggerHook'), | ||
]) | ||
|
||
checkpoint_config = dict(interval=10) | ||
# optimizer | ||
optimizer = dict( | ||
type='SGD', | ||
lr=0.01, | ||
momentum=0.9, | ||
weight_decay=0.0001, | ||
paramwise_options=dict(bias_lr_mult=2., bias_decay_mult=0.)) | ||
optimizer_config = dict(grad_clip=None) | ||
# learning policy | ||
lr_config = dict( | ||
policy='step', | ||
warmup='linear', | ||
warmup_iters=500, | ||
warmup_ratio=1.0 / 3, | ||
warmup_by_epoch=False, | ||
step=[8, 11]) | ||
|
||
total_epochs = 12 | ||
|
||
find_unused_parameters = False | ||
|
||
CLASSES = [ | ||
'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', | ||
'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', | ||
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', | ||
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', | ||
'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', | ||
'baseball bat', 'baseball glove', 'skateboard', 'surfboard', | ||
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', | ||
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', | ||
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', | ||
'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', | ||
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', | ||
'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', | ||
'hair drier', 'toothbrush' | ||
] | ||
|
||
img_scale = (1333, 800) | ||
|
||
img_norm_cfg = dict( | ||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) | ||
|
||
train_pipeline = [ | ||
dict(type='MMResize', img_scale=img_scale, keep_ratio=True), | ||
dict(type='MMRandomFlip', flip_ratio=0.5), | ||
dict(type='MMNormalize', **img_norm_cfg), | ||
dict(type='MMPad', size_divisor=32), | ||
dict(type='DefaultFormatBundle'), | ||
dict( | ||
type='Collect', | ||
keys=['img', 'gt_bboxes', 'gt_labels'], | ||
meta_keys=('filename', 'ori_filename', 'ori_shape', 'ori_img_shape', | ||
'img_shape', 'pad_shape', 'scale_factor', 'flip', | ||
'flip_direction', 'img_norm_cfg')) | ||
] | ||
test_pipeline = [ | ||
dict( | ||
type='MMMultiScaleFlipAug', | ||
img_scale=img_scale, | ||
flip=False, | ||
transforms=[ | ||
dict(type='MMResize', keep_ratio=True), | ||
dict(type='MMRandomFlip'), | ||
dict(type='MMNormalize', **img_norm_cfg), | ||
dict(type='MMPad', size_divisor=32), | ||
dict(type='ImageToTensor', keys=['img']), | ||
dict( | ||
type='Collect', | ||
keys=['img'], | ||
meta_keys=('filename', 'ori_filename', 'ori_shape', | ||
'ori_img_shape', 'img_shape', 'pad_shape', | ||
'scale_factor', 'flip', 'flip_direction', | ||
'img_norm_cfg')) | ||
]) | ||
] | ||
|
||
# dataset settings | ||
data_type = 'DetSourcePAI' | ||
train_path = 'data/coco/train2017.manifest' | ||
val_path = 'data/coco/val2017.manifest' | ||
test_batch_size = 1 | ||
|
||
train_dataset = dict( | ||
type='DetDataset', | ||
data_source=dict(type=data_type, path=train_path, classes=CLASSES), | ||
pipeline=train_pipeline) | ||
|
||
val_dataset = dict( | ||
type='DetDataset', | ||
imgs_per_gpu=test_batch_size, | ||
data_source=dict(type=data_type, path=val_path, classes=CLASSES), | ||
pipeline=test_pipeline) | ||
|
||
data = dict( | ||
imgs_per_gpu=2, workers_per_gpu=2, train=train_dataset, val=val_dataset) | ||
|
||
# evaluation | ||
eval_config = dict(interval=1, gpu_collect=False) | ||
eval_pipelines = [ | ||
dict( | ||
mode='test', | ||
evaluators=[ | ||
dict(type='CocoDetectionEvaluator', classes=CLASSES), | ||
], | ||
) | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters