This repository provides examples of data-driven quantum chemistry (DDQC) methods from the "Data-Driven acceleration of coupled-cluster and perturbation theory methods" book chapter in Quantum Chemistry in the Age of Machine Learning.
- DDCCSD=0.1
- DDCASPT2=0.1
- Install conda using Miniconda
- You will need a valid install of Psi4 and Psi4NumPy to run the DDCCSD tutorials. Link for installation information Psi4NumPy
- Clone repository
git clone https://github.com/ChemRacer/DDQC_Demo.git
- Install conda environment named ddqc_demo
cd DDQC_Demo/conda-envs
conda env create -f ddqc_demo.yml
- Link conda environment to jupyter kernel
conda activate ddqc_demo
ipython kernel install --user --name=ddqc_demo
conda deactivate
To run the DDCCSD tutorial:
cd DDQC_Demo/DDCCSD/
jupyter notebook DDCCSD_model.ipynb
To run the DDCASPT2 tutorial:
cd DDQC_Demo/DDCASPT2/
jupyter notebook gen_pair.ipynb