Welcome to Hohai University (河海大学) 多模态人工智能实验室 (Artificial Intelligence of Multi-modality Group, AIM Group) time-series forecasting codebase!
This codebase is under active development. If you find any bugs or have any suggestions for code improvement, please raise an issue, thanks🎈
-
Clone this repo:
git clone https://github.com/ChenDelong1999/HHForecasting.git cd HHForecasting
-
Create a conda virtual environment and activate it:
conda create -n HHForecasting python=3.6 -y conda activate HHForecasting
-
Install PyTorch (official website).
-
Install other requirements:
conda install tqdm pandas seaborn matplotlib scikit-learn tensorboard -y
See YuQue Doc for data descriptions.
Dataset | Link |
---|---|
屯溪、昌化 (Tunxi, Changhua) | BaiduPan (access code: private*) |
WaterBench | BaiduPan (access code: 03l0) |
*Currently we do not plan to make these two datasets to be public. If you are a member of Prof. Fan Liu's lab, contact Prof. Liu ([email protected]) or Delong Chen ([email protected]) for the access code.
Download the dataset and put it to the /dataset
folder as follows:
$ tree dataset /f
.. HHForecasting\dataset
├── ChangHua
│ └── data.csv
│
├── TunXi
│ ├── data.csv
│ └── documentation
│
└── WaterBench
├── 1609_data.csv
├── 521_data.csv
├── ...
├── 668_data.csv
└── 671_data.csv
python sklearn_baselines.py
python train_stage1.py --dataset ChangHua --structure residual --backbone TCN --head conv1d
--structure
:'residual'
or'direct'
or'joint'
python train_stage1.py --dataset ChangHua --structure residual --backbone TCN --head conv1d --few_shot_num 20 --batch_size 16 --N_EPOCH 1000
'few_shot_num' denotes the number of experiments on each training set scale.
See our FloodDAN paper below and YuQue Doc for details of this implementation.
Delong Chen, Ruizhi Zhou, Yanling Pan, Fan Liu: A Simple Baseline for Adversarial Domain Adaptation-based Unsupervised Flood Forecasting. Technical Report, ArXiv, CoRR abs/2206.08105 (2022).
python train_stage1.py --dataset TunXi --structure residual --backbone TCN --head conv1d
--structure
:'residual'
or'direct'
--backbone
:'TCN'
or'ANN'
or'LSTM'
or'GRU'
or'RNN'
or'STGCN'
--head
:'linear'
or'conv1d'
python train_stage2.py --backbone TCN --pre_structure residual --pre_backbone TCN --pre_head conv1d --pretrained_weights runs/<your pretraining run log dir>/last.pt
--backbone
:'TCN'
or'ANN'
or'LSTM'
or'GRU'
or'RNN'
or'STGCN'
--pre_structure
:'residual'
or'direct'
--pre_backbone
:'TCN'
or'ANN'
or'LSTM'
or'GRU'
or'RNN'
or'STGCN'
--pre_head
:'linear'
or'conv1d'
--pretrained_weights
: runs/<your stage 1 run log dir>/last.pt
Monitoring training procedure from tensorboard:
tensorboard --logdir runs
-
Delong Chen, Ruizhi Zhou, Yanling Pan, Fan Liu: A Simple Baseline for Adversarial Domain Adaptation-based Unsupervised Flood Forecasting. Technical Report, ArXiv, CoRR abs/2206.08105 (2022).
-
Delong Chen, Fan Liu, Zheqi Zhang, Xiaomin Lu, Zewen Li: Significant Wave Height Prediction based on Wavelet Graph Neural Network. 2021 IEEE 4th International Conference on Big Data and Artificial Intelligence (BDAI).
-
Fan Liu, Xiaomin Lu, Dan Xu, Wenwen Dai, Huizhou Li: Research progress of ocean waves forecasting method. Journal of Hohai University (Natural Sciences).
-
Fan Liu, Feng Xu, Sai Yang: A Flood Forecasting Model Based on Deep Learning Algorithm via Integrating Stacked Autoencoders with BP Neural Network. 2017 IEEE Third International Conference on Multimedia Big Data (BigMM).