Skip to content
forked from cleinc/bts

From Big to Small: Multi-Scale Local Planar Guidance for Monocular Depth Estimation

License

Notifications You must be signed in to change notification settings

ChristinaTan0704/bts

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

81 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Mirror3D --- init_depth_generator BTS

We've updated the dataloader and the main train/test script to support our input format (coco format).

BTS

PWC PWC

From Big to Small: Multi-Scale Local Planar Guidance for Monocular Depth Estimation
arXiv
Supplementary material

Video Demo 1

Screenshot

Video Demo 2

Screenshot

Note

This repository contains TensorFlow and PyTorch implementations of BTS.

Preparation for all implementations

$ cd ~
$ mkdir workspace
$ cd workspace
### Make a folder for datasets
$ mkdir dataset
### Clone this repo
$ git clone https://github.com/cogaplex-bts/bts

Prepare NYU Depth V2 test set

$ cd ~/workspace/bts/utils
### Get official NYU Depth V2 split file
$ wget http://horatio.cs.nyu.edu/mit/silberman/nyu_depth_v2/nyu_depth_v2_labeled.mat
### Convert mat file to image files
$ python extract_official_train_test_set_from_mat.py nyu_depth_v2_labeled.mat splits.mat ../../dataset/nyu_depth_v2/official_splits/

Prepare KITTI official ground truth depth maps

Download the ground truth depthmaps from this link KITTI.
Then,

$ cd ~/workspace/dataset
$ mkdir kitti_dataset && cd kitti_dataset
$ mv ~/Downloads/data_depth_annotated.zip .
$ unzip data_depth_annotated.zip

Follow instructions from one of the below implementations with your choice.

TensorFlow Implementation

[./tensorflow/]

PyTorch Implementation

[./pytorch/]

Model Zoo

KITTI Eigen Split

Base Network cap d1 d2 d3 AbsRel SqRel RMSE RMSElog SILog log10 #Params Model Download
ResNet50 0-80m 0.954 0.992 0.998 0.061 0.250 2.803 0.098 9.030 0.027 49.5M bts_eigen_v2_pytorch_resnet50
ResNet101 0-80m 0.954 0.992 0.998 0.061 0.261 2.834 0.099 9.075 0.027 68.5M bts_eigen_v2_pytorch_resnet101
ResNext50 0-80m 0.954 0.993 0.998 0.061 0.245 2.774 0.098 9.014 0.027 49.0M bts_eigen_v2_pytorch_resnext50
ResNext101 0-80m 0.956 0.993 0.998 0.059 0.241 2.756 0.096 8.781 0.026 112.8M bts_eigen_v2_pytorch_resnext101
DenseNet121 0-80m 0.951 0.993 0.998 0.063 0.256 2.850 0.100 9.221 0.028 21.2M bts_eigen_v2_pytorch_densenet121
DenseNet161 0-80m 0.955 0.993 0.998 0.060 0.249 2.798 0.096 8.933 0.027 47.0M bts_eigen_v2_pytorch_densenet161

NYU Depth V2

Base Network d1 d2 d3 AbsRel SqRel RMSE RMSElog SILog log10 #Params Model Download
ResNet50 0.865 0.975 0.993 0.119 0.075 0.419 0.152 12.368 0.051 49.5M bts_nyu_v2_pytorch_resnet50
ResNet101 0.871 0.977 0.995 0.113 0.068 0.407 0.148 11.886 0.049 68.5M bts_nyu_v2_pytorch_resnet101
ResNext50 0.867 0.977 0.995 0.116 0.070 0.414 0.150 12.186 0.050 49.0M bts_nyu_v2_pytorch_resnext50
ResNext101 0.880 0.977 0.994 0.111 0.069 0.399 0.145 11.680 0.048 112.8M bts_nyu_v2_pytorch_resnext101
DenseNet121 0.871 0.977 0.993 0.118 0.072 0.410 0.149 12.028 0.050 21.2M bts_nyu_v2_pytorch_densenet121
DenseNet161 0.885 0.978 0.994 0.110 0.066 0.392 0.142 11.533 0.047 47.0M bts_nyu_v2_pytorch_densenet161

Note: Modify arguments '--encoder', '--model_name', '--checkpoint_path' and '--pred_path' accordingly.

Live Demo

Finally, we attach live 3d demo implementations for both of TensorFlow and Pytorch.
For best performance, get correct intrinsic values for your webcam and put them in bts_live_3d.py.
Sample usage for PyTorch:

$ cd ~/workspace/bts/pytorch
$ python bts_live_3d.py --model_name bts_nyu_v2_pytorch_densenet161 \
--encoder densenet161_bts \
--checkpoint_path ./models/bts_nyu_v2_pytorch_densenet161/model \
--max_depth 10 \
--input_height 480 \
--input_width 640

Citation

If you find this work useful for your research, please consider citing our paper:

@article{lee2019big,
  title={From big to small: Multi-scale local planar guidance for monocular depth estimation},
  author={Lee, Jin Han and Han, Myung-Kyu and Ko, Dong Wook and Suh, Il Hong},
  journal={arXiv preprint arXiv:1907.10326},
  year={2019}
}

License

Copyright (C) 2019 Jin Han Lee, Myung-Kyu Han, Dong Wook Ko and Il Hong Suh
This Software is licensed under GPL-3.0-or-later.

About

From Big to Small: Multi-Scale Local Planar Guidance for Monocular Depth Estimation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 86.8%
  • C++ 6.6%
  • Cuda 2.4%
  • Jupyter Notebook 1.9%
  • CMake 1.0%
  • MATLAB 0.7%
  • Other 0.6%