Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix Biharmonic Viscosity on Cubed-Sphere Grid #3850

Draft
wants to merge 13 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -5,11 +5,12 @@ using Oceananigans.Grids: peripheral_node

Abstract type for closures with scalar biharmonic diffusivities.
"""
abstract type AbstractScalarBiharmonicDiffusivity{F, N} <: AbstractTurbulenceClosure{ExplicitTimeDiscretization, N} end
abstract type AbstractScalarBiharmonicDiffusivity{F, N, VI} <: AbstractTurbulenceClosure{ExplicitTimeDiscretization, N} end

@inline formulation(::AbstractScalarBiharmonicDiffusivity{F}) where {F} = F()

const ASBD = AbstractScalarBiharmonicDiffusivity
const VectorInvariantASBD = AbstractScalarBiharmonicDiffusivity{<:HorizontalFormulation, <:Nothing, <:VectorInvariantForm}

#####
##### Coefficient extractors
Expand All @@ -34,27 +35,31 @@ const AHBD = AbstractScalarBiharmonicDiffusivity{<:HorizontalFormulation}
const ADBD = AbstractScalarBiharmonicDiffusivity{<:HorizontalDivergenceFormulation}
const AVBD = AbstractScalarBiharmonicDiffusivity{<:VerticalFormulation}

@inline viscous_flux_ux(i, j, k, grid, closure::AIBD, K, clk, fields, b) = + ν_σᶜᶜᶜ(i, j, k, grid, closure, K, clk, fields, ∂xᶜᶜᶜ, biharmonic_mask_x, ∇²ᶠᶜᶜ, fields.u)
@inline viscous_flux_vx(i, j, k, grid, closure::AIBD, K, clk, fields, b) = + ν_σᶠᶠᶜ(i, j, k, grid, closure, K, clk, fields, biharmonic_mask_x, ∂xᶠᶠᶜ, ∇²ᶜᶠᶜ, fields.v)
@inline viscous_flux_wx(i, j, k, grid, closure::AIBD, K, clk, fields, b) = + ν_σᶠᶜᶠ(i, j, k, grid, closure, K, clk, fields, biharmonic_mask_x, ∂xᶠᶜᶠ, ∇²ᶜᶜᶠ, fields.w)
@inline viscous_flux_uy(i, j, k, grid, closure::AIBD, K, clk, fields, b) = + ν_σᶠᶠᶜ(i, j, k, grid, closure, K, clk, fields, biharmonic_mask_y, ∂yᶠᶠᶜ, ∇²ᶠᶜᶜ, fields.u)
@inline viscous_flux_vy(i, j, k, grid, closure::AIBD, K, clk, fields, b) = + ν_σᶜᶜᶜ(i, j, k, grid, closure, K, clk, fields, ∂yᶜᶜᶜ, biharmonic_mask_y, ∇²ᶜᶠᶜ, fields.v)
@inline viscous_flux_wy(i, j, k, grid, closure::AIBD, K, clk, fields, b) = + ν_σᶜᶠᶠ(i, j, k, grid, closure, K, clk, fields, biharmonic_mask_y, ∂yᶜᶠᶠ, ∇²ᶜᶜᶠ, fields.w)
@inline viscous_flux_uz(i, j, k, grid, closure::AIBD, K, clk, fields, b) = + ν_σᶠᶜᶠ(i, j, k, grid, closure, K, clk, fields, biharmonic_mask_z, ∂zᶠᶜᶠ, ∇²ᶠᶜᶜ, fields.u)
@inline viscous_flux_vz(i, j, k, grid, closure::AIBD, K, clk, fields, b) = + ν_σᶜᶠᶠ(i, j, k, grid, closure, K, clk, fields, biharmonic_mask_z, ∂zᶜᶠᶠ, ∇²ᶜᶠᶜ, fields.v)
@inline viscous_flux_wz(i, j, k, grid, closure::AIBD, K, clk, fields, b) = + ν_σᶜᶜᶜ(i, j, k, grid, closure, K, clk, fields, ∂zᶜᶜᶜ, biharmonic_mask_z, ∇²ᶜᶜᶠ, fields.w)
@inline viscous_flux_ux(i, j, k, grid, closure::AHBD, K, clk, fields, b) = + ν_σᶜᶜᶜ(i, j, k, grid, closure, K, clk, fields, δ★ᶜᶜᶜ, fields.u, fields.v)
@inline viscous_flux_vx(i, j, k, grid, closure::AHBD, K, clk, fields, b) = + ν_σᶠᶠᶜ(i, j, k, grid, closure, K, clk, fields, ζ★ᶠᶠᶜ, fields.u, fields.v)
@inline viscous_flux_wx(i, j, k, grid, closure::AHBD, K, clk, fields, b) = + ν_σᶠᶜᶠ(i, j, k, grid, closure, K, clk, fields, biharmonic_mask_x, ∂xᶠᶜᶠ, ∇²ᶜᶜᶠ, fields.w)
@inline viscous_flux_uy(i, j, k, grid, closure::AHBD, K, clk, fields, b) = - ν_σᶠᶠᶜ(i, j, k, grid, closure, K, clk, fields, ζ★ᶠᶠᶜ, fields.u, fields.v)
@inline viscous_flux_vy(i, j, k, grid, closure::AHBD, K, clk, fields, b) = + ν_σᶜᶜᶜ(i, j, k, grid, closure, K, clk, fields, δ★ᶜᶜᶜ, fields.u, fields.v)
@inline viscous_flux_wy(i, j, k, grid, closure::AHBD, K, clk, fields, b) = + ν_σᶜᶠᶠ(i, j, k, grid, closure, K, clk, fields, biharmonic_mask_y, ∂yᶜᶠᶠ, ∇²ᶜᶜᶠ, fields.w)
@inline viscous_flux_uz(i, j, k, grid, closure::AVBD, K, clk, fields, b) = + ν_σᶠᶜᶠ(i, j, k, grid, closure, K, clk, fields, biharmonic_mask_z, ∂zᶠᶜᶠ, ∂²zᶠᶜᶜ, fields.u)
@inline viscous_flux_vz(i, j, k, grid, closure::AVBD, K, clk, fields, b) = + ν_σᶜᶠᶠ(i, j, k, grid, closure, K, clk, fields, biharmonic_mask_z, ∂zᶜᶠᶠ, ∂²zᶜᶠᶜ, fields.v)
@inline viscous_flux_wz(i, j, k, grid, closure::AVBD, K, clk, fields, b) = + ν_σᶜᶜᶜ(i, j, k, grid, closure, K, clk, fields, ∂zᶜᶜᶜ, biharmonic_mask_z, ∂²zᶜᶜᶠ, fields.w)

@inline viscous_flux_ux(i, j, k, grid, closure::ADBD, K, clk, fields, b) = + ν_σᶜᶜᶜ(i, j, k, grid, closure, K, clk, fields, δ★ᶜᶜᶜ, fields.u, fields.v)
@inline viscous_flux_vy(i, j, k, grid, closure::ADBD, K, clk, fields, b) = + ν_σᶜᶜᶜ(i, j, k, grid, closure, K, clk, fields, δ★ᶜᶜᶜ, fields.u, fields.v)
@inline ν_σᶜᶜᶜ(i, j, k, grid, closure::Union{AHBD, VectorInvariantASBD}, K, clock, fields, σᶜᶜᶜ, args...) = νᶜᶜᶜ(i, j, k, grid, closure, K, clock, fields) * σᶜᶜᶜ(i, j, k, grid, closure, args...)
@inline ν_σᶠᶠᶜ(i, j, k, grid, closure::Union{AHBD, VectorInvariantASBD}, K, clock, fields, σᶠᶠᶜ, args...) = νᶠᶠᶜ(i, j, k, grid, closure, K, clock, fields) * σᶠᶠᶜ(i, j, k, grid, closure, args...)
@inline ν_σᶠᶜᶠ(i, j, k, grid, closure::Union{AHBD, VectorInvariantASBD}, K, clock, fields, σᶠᶜᶠ, args...) = νᶠᶜᶠ(i, j, k, grid, closure, K, clock, fields) * σᶠᶜᶠ(i, j, k, grid, closure, args...)
@inline ν_σᶜᶠᶠ(i, j, k, grid, closure::Union{AHBD, VectorInvariantASBD}, K, clock, fields, σᶜᶠᶠ, args...) = νᶜᶠᶠ(i, j, k, grid, closure, K, clock, fields) * σᶜᶠᶠ(i, j, k, grid, closure, args...)

@inline viscous_flux_ux(i, j, k, grid, closure::AIBD, K, clk, fields, b) = + ν_σᶜᶜᶜ(i, j, k, grid, closure, K, clk, fields, ∂xᶜᶜᶜ, biharmonic_mask_x, ∇²ᶠᶜᶜ, fields.u)
@inline viscous_flux_vx(i, j, k, grid, closure::AIBD, K, clk, fields, b) = + ν_σᶠᶠᶜ(i, j, k, grid, closure, K, clk, fields, biharmonic_mask_x, ∂xᶠᶠᶜ, ∇²ᶜᶠᶜ, fields.v)
@inline viscous_flux_wx(i, j, k, grid, closure::AIBD, K, clk, fields, b) = + ν_σᶠᶜᶠ(i, j, k, grid, closure, K, clk, fields, biharmonic_mask_x, ∂xᶠᶜᶠ, ∇²ᶜᶜᶠ, fields.w)
@inline viscous_flux_uy(i, j, k, grid, closure::AIBD, K, clk, fields, b) = + ν_σᶠᶠᶜ(i, j, k, grid, closure, K, clk, fields, biharmonic_mask_y, ∂yᶠᶠᶜ, ∇²ᶠᶜᶜ, fields.u)
@inline viscous_flux_vy(i, j, k, grid, closure::AIBD, K, clk, fields, b) = + ν_σᶜᶜᶜ(i, j, k, grid, closure, K, clk, fields, ∂yᶜᶜᶜ, biharmonic_mask_y, ∇²ᶜᶠᶜ, fields.v)
@inline viscous_flux_wy(i, j, k, grid, closure::AIBD, K, clk, fields, b) = + ν_σᶜᶠᶠ(i, j, k, grid, closure, K, clk, fields, biharmonic_mask_y, ∂yᶜᶠᶠ, ∇²ᶜᶜᶠ, fields.w)
@inline viscous_flux_uz(i, j, k, grid, closure::AIBD, K, clk, fields, b) = + ν_σᶠᶜᶠ(i, j, k, grid, closure, K, clk, fields, biharmonic_mask_z, ∂zᶠᶜᶠ, ∇²ᶠᶜᶜ, fields.u)
@inline viscous_flux_vz(i, j, k, grid, closure::AIBD, K, clk, fields, b) = + ν_σᶜᶠᶠ(i, j, k, grid, closure, K, clk, fields, biharmonic_mask_z, ∂zᶜᶠᶠ, ∇²ᶜᶠᶜ, fields.v)
@inline viscous_flux_wz(i, j, k, grid, closure::AIBD, K, clk, fields, b) = + ν_σᶜᶜᶜ(i, j, k, grid, closure, K, clk, fields, ∂zᶜᶜᶜ, biharmonic_mask_z, ∇²ᶜᶜᶠ, fields.w)
@inline viscous_flux_ux(i, j, k, grid, closure::Union{AHBD, VectorInvariantASBD}, K, clk, fields, b) = + ν_σᶜᶜᶜ(i, j, k, grid, closure, K, clk, fields, δ★ᶜᶜᶜ, fields.u, fields.v)
@inline viscous_flux_vx(i, j, k, grid, closure::Union{AHBD, VectorInvariantASBD}, K, clk, fields, b) = + ν_σᶠᶠᶜ(i, j, k, grid, closure, K, clk, fields, ζ★ᶠᶠᶜ, fields.u, fields.v)
@inline viscous_flux_wx(i, j, k, grid, closure::Union{AHBD, VectorInvariantASBD}, K, clk, fields, b) = + ν_σᶠᶜᶠ(i, j, k, grid, closure, K, clk, fields, biharmonic_mask_x, ∂xᶠᶜᶠ, ∇²ᶜᶜᶠ, fields.w)
@inline viscous_flux_uy(i, j, k, grid, closure::Union{AHBD, VectorInvariantASBD}, K, clk, fields, b) = - ν_σᶠᶠᶜ(i, j, k, grid, closure, K, clk, fields, ζ★ᶠᶠᶜ, fields.u, fields.v)
@inline viscous_flux_vy(i, j, k, grid, closure::Union{AHBD, VectorInvariantASBD}, K, clk, fields, b) = + ν_σᶜᶜᶜ(i, j, k, grid, closure, K, clk, fields, δ★ᶜᶜᶜ, fields.u, fields.v)
@inline viscous_flux_wy(i, j, k, grid, closure::Union{AHBD, VectorInvariantASBD}, K, clk, fields, b) = + ν_σᶜᶠᶠ(i, j, k, grid, closure, K, clk, fields, biharmonic_mask_y, ∂yᶜᶠᶠ, ∇²ᶜᶜᶠ, fields.w)
siddharthabishnu marked this conversation as resolved.
Show resolved Hide resolved
@inline viscous_flux_uz(i, j, k, grid, closure::AVBD, K, clk, fields, b) = + ν_σᶠᶜᶠ(i, j, k, grid, closure, K, clk, fields, biharmonic_mask_z, ∂zᶠᶜᶠ, ∂²zᶠᶜᶜ, fields.u)
@inline viscous_flux_vz(i, j, k, grid, closure::AVBD, K, clk, fields, b) = + ν_σᶜᶠᶠ(i, j, k, grid, closure, K, clk, fields, biharmonic_mask_z, ∂zᶜᶠᶠ, ∂²zᶜᶠᶜ, fields.v)
@inline viscous_flux_wz(i, j, k, grid, closure::AVBD, K, clk, fields, b) = + ν_σᶜᶜᶜ(i, j, k, grid, closure, K, clk, fields, ∂zᶜᶜᶜ, biharmonic_mask_z, ∂²zᶜᶜᶠ, fields.w)
@inline viscous_flux_ux(i, j, k, grid, closure::ADBD, K, clk, fields, b) = + ν_σᶜᶜᶜ(i, j, k, grid, closure, K, clk, fields, δ★ᶜᶜᶜ, fields.u, fields.v)
@inline viscous_flux_vy(i, j, k, grid, closure::ADBD, K, clk, fields, b) = + ν_σᶜᶜᶜ(i, j, k, grid, closure, K, clk, fields, δ★ᶜᶜᶜ, fields.u, fields.v)

#####
##### Diffusive fluxes
Expand All @@ -71,27 +76,35 @@ const AVBD = AbstractScalarBiharmonicDiffusivity{<:VerticalFormulation}
##### Biharmonic-specific viscous operators
#####

# See https://mitgcm.readthedocs.io/en/latest/algorithm/algorithm.html#horizontal-dissipation
@inline function δ★ᶜᶜᶜ(i, j, k, grid, u, v)
@inline ∇²u_vector_invariantᶠᶜᶜ(i, j, k, grid, u, v) = δxᶠᶜᶜ(i, j, k, grid, div_xyᶜᶜᶜ, u, v) - δyᶠᶜᶜ(i, j, k, grid, ζ₃ᶠᶠᶜ, u, v)
@inline ∇²v_vector_invariantᶜᶠᶜ(i, j, k, grid, u, v) = δxᶜᶠᶜ(i, j, k, grid, ζ₃ᶠᶠᶜ, u, v) + δyᶜᶠᶜ(i, j, k, grid, div_xyᶜᶜᶜ, u, v)

# These closures seem to be needed to help the compiler infer types
# (either of u and v or of the function arguments)
@inline Δy_∇²u(i, j, k, grid, u) = Δy_qᶠᶜᶜ(i, j, k, grid, biharmonic_mask_x, ∇²hᶠᶜᶜ, u)
@inline Δx_∇²v(i, j, k, grid, v) = Δx_qᶜᶠᶜ(i, j, k, grid, biharmonic_mask_y, ∇²hᶜᶠᶜ, v)
# These closures seem to be needed to help the compiler infer types
# (either of u and v or of the function arguments)
@inline Δy_∇²u(i, j, k, grid, closure, u, v) = Δy_qᶠᶜᶜ(i, j, k, grid, biharmonic_mask_x, ∇²hᶠᶜᶜ, u)
@inline Δx_∇²v(i, j, k, grid, closure, u, v) = Δx_qᶜᶠᶜ(i, j, k, grid, biharmonic_mask_y, ∇²hᶜᶠᶜ, v)
Comment on lines +84 to +85
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Are ∇²v and ∇²u still appropriate names for these operators? It's a bit confusing.


return 1 / Azᶜᶜᶜ(i, j, k, grid) * (δxᶜᵃᵃ(i, j, k, grid, Δy_∇²u, u) +
δyᵃᶜᵃ(i, j, k, grid, Δx_∇²v, v))
end
@inline Δy_∇²v(i, j, k, grid, closure, u, v) = Δy_qᶜᶠᶜ(i, j, k, grid, biharmonic_mask_y, ∇²hᶜᶠᶜ, v)
@inline Δx_∇²u(i, j, k, grid, closure, u, v) = Δx_qᶠᶜᶜ(i, j, k, grid, biharmonic_mask_x, ∇²hᶠᶜᶜ, u)

@inline Δy_∇²u(i, j, k, grid, ::VectorInvariantASBD, u, v) = Δy_qᶠᶜᶜ(i, j, k, grid, biharmonic_mask_x, ∇²u_vector_invariantᶠᶜᶜ, u, v)
@inline Δx_∇²v(i, j, k, grid, ::VectorInvariantASBD, u, v) = Δx_qᶜᶠᶜ(i, j, k, grid, biharmonic_mask_y, ∇²v_vector_invariantᶜᶠᶜ, u, v)

@inline function ζ★ᶠᶠᶜ(i, j, k, grid, u, v)
# See https://mitgcm.readthedocs.io/en/latest/algorithm/algorithm.html#horizontal-dissipation
@inline function δ★ᶜᶜᶜ(i, j, k, grid, closure, u, v)
return 1 / Azᶜᶜᶜ(i, j, k, grid) * (δxᶜᵃᵃ(i, j, k, grid, Δy_∇²u, closure, u, v) +
δyᵃᶜᵃ(i, j, k, grid, Δx_∇²v, closure, u, v))
end

# These closures seem to be needed to help the compiler infer types
# (either of u and v or of the function arguments)
@inline Δy_∇²v(i, j, k, grid, v) = Δy_qᶜᶠᶜ(i, j, k, grid, biharmonic_mask_y, ∇²hᶜᶠᶜ, v)
@inline Δx_∇²u(i, j, k, grid, u) = Δx_qᶠᶜᶜ(i, j, k, grid, biharmonic_mask_x, ∇²hᶠᶜᶜ, u)
@inline function ζ★ᶠᶠᶜ(i, j, k, grid, closure, u, v)
return 1 / Azᶠᶠᶜ(i, j, k, grid) * (δxᶠᵃᵃ(i, j, k, grid, Δy_∇²v, closure, u, v) -
δyᵃᶠᵃ(i, j, k, grid, Δx_∇²u, closure, u, v))
end

return 1 / Azᶠᶠᶜ(i, j, k, grid) * (δxᶠᵃᵃ(i, j, k, grid, Δy_∇²v, v) -
δyᵃᶠᵃ(i, j, k, grid, Δx_∇²u, u))
@inline function ζ★ᶠᶠᶜ(i, j, k, grid, ::VectorInvariantASBD, u, v)
∇²u = ∇²u_vector_invariantᶠᶜᶜ(i, j, k, grid, u, v)
∇²v = ∇²v_vector_invariantᶜᶠᶜ(i, j, k, grid, u, v)
return ζ₃ᶠᶠᶜ(i, j, k, grid, ∇²u, ∇²v)
end

#####
Expand Down
7 changes: 7 additions & 0 deletions src/TurbulenceClosures/abstract_scalar_diffusivity_closure.jl
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,13 @@ Specifies a horizontally-isotropic, `VectorInvariant`, `ScalarDiffusivity`.
"""
struct HorizontalFormulation <: AbstractDiffusivityFormulation end

"""
struct VectorInvariantForm end

Specifies a `VectorInvariant` `ScalarDiffusivity`.
"""
struct VectorInvariantForm <: AbstractDiffusivityFormulation end

"""
struct HorizontalDivergenceFormulation end

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -6,10 +6,10 @@ using Oceananigans.Utils: prettysummary

Holds viscosity and diffusivities for models with prescribed isotropic diffusivities.
"""
struct ScalarBiharmonicDiffusivity{F, N, V, K} <: AbstractScalarBiharmonicDiffusivity{F, N}
struct ScalarBiharmonicDiffusivity{F, N, VI, V, K} <: AbstractScalarBiharmonicDiffusivity{F, N, VI}
ν :: V
κ :: K
ScalarBiharmonicDiffusivity{F, N}(ν::V, κ::K) where {F, V, K, N} = new{F, N, V, K}(ν, κ)
ScalarBiharmonicDiffusivity{F, N, VI}(ν::V, κ::K) where {F, N, VI, V, K} = new{F, N, VI, V, K}(ν, κ)
end

# Aliases that allow specify the floating type, assuming that the discretization is Explicit in time
Expand Down Expand Up @@ -76,26 +76,29 @@ function ScalarBiharmonicDiffusivity(formulation = ThreeDimensionalFormulation()
ν = 0,
κ = 0,
discrete_form = false,
vector_invariant_form = true,
loc = (nothing, nothing, nothing),
parameters = nothing,
required_halo_size::Int = 2)

ν = convert_diffusivity(FT, ν; discrete_form, loc, parameters)
κ = convert_diffusivity(FT, κ; discrete_form, loc, parameters)


VI = vector_invariant_form ? VectorInvariantForm : nothing

# Force a type-stable constructor if ν and κ are numbers
# This particular short-circuiting of the required_halo_size kwargs is necessary to perform parameter
# estimation of the diffusivity coefficients using autodiff.
if ν isa Number && κ isa Number
return ScalarBiharmonicDiffusivity{typeof(formulation), 2}(ν, κ)
return ScalarBiharmonicDiffusivity{typeof(formulation), 2, VI}(ν, κ)
end

return ScalarBiharmonicDiffusivity{typeof(formulation), required_halo_size}(ν, κ)
return ScalarBiharmonicDiffusivity{typeof(formulation), required_halo_size, VI}(ν, κ)
end

function with_tracers(tracers, closure::ScalarBiharmonicDiffusivity{F, N, V, K}) where {F, N, V, K}
function with_tracers(tracers, closure::ScalarBiharmonicDiffusivity{F, N, VI}) where {F, N, VI}
κ = tracer_diffusivities(tracers, closure.κ)
return ScalarBiharmonicDiffusivity{F, N}(closure.ν, κ)
return ScalarBiharmonicDiffusivity{F, N, VI}(closure.ν, κ)
end

@inline viscosity(closure::ScalarBiharmonicDiffusivity, K) = closure.ν
Expand Down