Skip to content
This repository has been archived by the owner on Oct 20, 2020. It is now read-only.

PyAthenaJDBC is a Python DB API 2.0 (PEP 249) compliant wrapper for Amazon Athena JDBC driver.

License

Notifications You must be signed in to change notification settings

Cloudzero/PyAthenaJDBC

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

https://travis-ci.org/laughingman7743/PyAthenaJDBC.svg?branch=master

PyAthenaJDBC

PyAthenaJDBC is a Python DB API 2.0 (PEP 249) compliant wrapper for Amazon Athena JDBC driver.

Requirements

  • Python
    • CPython 2.6, 2,7, 3,4, 3.5
  • Java
    • Java >= 8

Installation

$ pip install PyAthenaJDBC

Extra packages:

Package Install command Version
Pandas pip install PyAthenaJDBC[Pandas] >=0.19.0
SQLAlchemy pip install PyAthenaJDBC[SQLAlchemy] >=1.0.0

Usage

Basic usage

from pyathenajdbc import connect

conn = connect(s3_staging_dir='s3://YOUR_S3_BUCKET/path/to/',
               region_name='us-west-2')
try:
    with conn.cursor() as cursor:
        cursor.execute("""
        SELECT * FROM one_row
        """)
        print(cursor.description)
        print(cursor.fetchall())
finally:
    conn.close()

Cursor iteration

from pyathenajdbc import connect

conn = connect(s3_staging_dir='s3://YOUR_S3_BUCKET/path/to/',
               region_name='us-west-2')
try:
    with conn.cursor() as cursor:
        cursor.execute("""
        SELECT * FROM many_rows LIMIT 10
        """)
        for row in cursor:
            print(row)
finally:
    conn.close()

Query with parameter

Supported DB API paramstyle is only PyFormat. PyFormat only supports named placeholders with old % operator style and parameters specify dictionary format.

from pyathenajdbc import connect

conn = connect(s3_staging_dir='s3://YOUR_S3_BUCKET/path/to/',
               region_name='us-west-2')
try:
    with conn.cursor() as cursor:
        cursor.execute("""
        SELECT col_string FROM one_row_complex
        WHERE col_string = %(param)s
        """, {'param': 'a string'})
        print(cursor.fetchall())
finally:
    conn.close()

if % character is contained in your query, it must be escaped with %% like the following:

SELECT col_string FROM one_row_complex
WHERE col_string = %(param)s OR col_string LIKE 'a%%'

JVM Options

In the connect method or connection object, you can specify JVM options with a string array.

You can increase the JVM heap size like the following:

from pyathenajdbc import connect

conn = connect(s3_staging_dir='s3://YOUR_S3_BUCKET/path/to/',
               region_name='us-west-2',
               jvm_options=['-Xms1024m', '-Xmx4096m'])
try:
    with conn.cursor() as cursor:
        cursor.execute("""
        SELECT * FROM many_rows
        """)
        print(cursor.fetchall())
finally:
    conn.close()

SQLAlchemy

Install SQLAlchemy with pip install SQLAlchemy>=1.0.0 or pip install PyAthenaJDBC[SQLAlchemy]. Supported SQLAlchemy is 1.0.0 or higher.

import contextlib
from urllib.parse import quote_plus  # PY2: from urllib import quote_plus
from sqlalchemy.engine import create_engine
from sqlalchemy.sql.expression import select
from sqlalchemy.sql.functions import func
from sqlalchemy.sql.schema import Table, MetaData

conn_str = 'awsathena+jdbc://{access_key}:{secret_key}@athena.{region_name}.amazonaws.com:443/'\
           '{schema_name}?s3_staging_dir={s3_staging_dir}'
engine = create_engine(conn_str.format(
    access_key=quote_plus('YOUR_ACCESS_KEY'),
    secret_key=quote_plus('YOUR_SECRET_ACCESS_KEY'),
    region_name='us-west-2',
    schema_name='default',
    s3_staging_dir=quote_plus('s3://YOUR_S3_BUCKET/path/to/')))
try:
    with contextlib.closing(engine.connect()) as conn:
        many_rows = Table('many_rows', MetaData(bind=engine), autoload=True)
        print(select([func.count('*')], from_obj=many_rows).scalar())
finally:
    engine.dispose()

The connection string has the following format:

awsathena+jdbc://{access_key}:{secret_key}@athena.{region_name}.amazonaws.com:443/{schema_name}?s3_staging_dir={s3_staging_dir}&driver_path={driver_path}&...

NOTE: s3_staging_dir requires quote. If access_key, secret_key and other parameter contain special characters, quote is also required.

Pandas

Minimal example for Pandas DataFrame:

from pyathenajdbc import connect
import pandas as pd

conn = connect(access_key='YOUR_ACCESS_KEY_ID',
               secret_key='YOUR_SECRET_ACCESS_KEY',
               s3_staging_dir='s3://YOUR_S3_BUCKET/path/to/',
               region_name='us-west-2',
               jvm_path='/path/to/jvm')  # optional, as used by JPype
df = pd.read_sql("SELECT * FROM many_rows LIMIT 10", conn)

As Pandas DataFrame:

import contextlib
from pyathenajdbc import connect
from pyathenajdbc.util import as_pandas

with contextlib.closing(
        connect(s3_staging_dir='s3://YOUR_S3_BUCKET/path/to/'
                region_name='us-west-2'))) as conn:
    with conn.cursor() as cursor:
        cursor.execute("""
        SELECT * FROM many_rows
        """)
        df = as_pandas(cursor)
print(df.describe())

Examples

Redash query runner example

See examples/redash/athena.py

Credential

Support AWS CLI credentials, Instance profile credentials and Properties file credentials.

Credential Files

~/.aws/credentials

[default]
aws_access_key_id=YOUR_ACCESS_KEY_ID
aws_secret_access_key=YOUR_SECRET_ACCESS_KEY

~/.aws/config

[default]
region=us-west-2
output=json

Environment variables

$ export AWS_ACCESS_KEY_ID=YOUR_ACCESS_KEY_ID
$ export AWS_SECRET_ACCESS_KEY=YOUR_SECRET_ACCESS_KEY
$ export AWS_DEFAULT_REGION=us-west-2

Additional environment variable:

$ export AWS_ATHENA_S3_STAGING_DIR=s3://YOUR_S3_BUCKET/path/to/

Instance profile credentials

If you create an EC2 instance profile with a policy like the following and attach it to the EC2 instance, PyAthenaJDBC accesses Amazon Athena using temporary credentials.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": [
        "athena:*"
      ],
      "Resource": [
        "*"
      ]
    },
    {
      "Effect": "Allow",
      "Action": [
        "s3:GetBucketLocation",
        "s3:GetObject",
        "s3:ListBucket",
        "s3:ListBucketMultipartUploads",
        "s3:ListMultipartUploadParts",
        "s3:AbortMultipartUpload",
        "s3:CreateBucket",
        "s3:PutObject"
      ],
      "Resource": [
        "arn:aws:s3:::aws-athena-query-results-*",
        "arn:aws:s3:::YOUR_S3_STAGING_DIR",
        "arn:aws:s3:::YOUR_S3_AWESOME_LOG_DATA"
      ]
    }
  ]
}

In the connect method or connection object, you can connect by specifying at least s3_staging_dir and region_name. It is not necessary to specify access_key and secret_key.

from pyathenajdbc import connect

conn = connect(s3_staging_dir='s3://YOUR_S3_BUCKET/path/to/',
               region_name='us-west-2')

Terraform Instance profile example:

See examples/terraform/

Properties file credentials

If you create a property file of the following format and specify the path with credential_file of the connect method or connection object, PyAthenaJDBC accesses Amazon Athena using the properties file.

accessKeyId:YOUR_ACCESS_KEY_ID
secretKey:YOUR_SECRET_ACCESS_KEY
from pyathenajdbc import connect

conn = connect(credential_file='/path/to/AWSCredentials.properties',
               s3_staging_dir='s3://YOUR_S3_BUCKET/path/to/',
               region_name='us-west-2')

Testing

Depends on the following environment variables:

$ export AWS_ACCESS_KEY_ID=YOUR_ACCESS_KEY_ID
$ export AWS_SECRET_ACCESS_KEY=YOUR_SECRET_ACCESS_KEY
$ export AWS_DEFAULT_REGION=us-west-2
$ export AWS_ATHENA_S3_STAGING_DIR=s3://YOUR_S3_BUCKET/path/to/

Run test

$ pip install pytest awscli
$ scripts/test_data/upload_test_data.sh
$ py.test
$ scripts/test_data/delete_test_data.sh

Run test multiple Python versions

$ pip install tox awscli
$ scripts/test_data/upload_test_data.sh
$ pyenv local 2.6.9 2.7.12 3.4.5 3.5.2
$ tox
$ scripts/test_data/delete_test_data.sh

About

PyAthenaJDBC is a Python DB API 2.0 (PEP 249) compliant wrapper for Amazon Athena JDBC driver.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 99.1%
  • Shell 0.9%