Skip to content

Columbia-PRIME/pcpr

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pcpr

PCP functions in R including adaptations for environmental data.

to run:

To use this package, clone the repo or download the .zip file. Locate the folder, unzip if applicable, and use the following code. Replace path_to_folder with your local path.

install.packages("path_to_folder", repos = NULL, type="source")
library(pcpr)

includes:

  1. stable_pcp

    • This includes a non-negativity constraint on the L solution matrix. It does not include a LOD (limit of detection) penalty.
    • It takes 4 inputs:
      • D the original dataset
      • lambda parameter
      • mu parameter
      • verbose parameter (optional)
    • For more info: ?stable_pcp
  2. pcp_lod

    • This includes a non-negativity constraint on the L solution matrix and a separate penalty function for values <LOD.
    • Values <LOD should be pre-processed as -1.
    • It takes 5 inputs:
      • D the original dataset
      • lambda parameter
      • mu parameter
      • LOD may be a scalar, vector, or matrix
      • verbose parameter (optional)
    • For more info: ?pcp_lod
  3. root_pcp

    • This changes the objective function by removing the squaring of the error term so that the mu parameter does not rely on the unknown sigma value. It does not include a non-negativity constraint on the L matrix or a LOD penalty.
    • It takes 4 inputs:
      • D the original dataset
      • lambda parameter
      • mu parameter
      • verbose parameter (optional)
    • For more info: ?root_pcp
  4. root_pcp_nonnegL

    • This includes a non-negativity constraint on the L matrix with the squareroot version of the objective function. It does not include a LOD penalty.
    • It takes 4 inputs:
      • D the original dataset
      • lambda parameter
      • mu parameter
      • verbose parameter (optional)
    • For more info: ?root_pcp_nonnegL
  5. root_pcp_na

    • This allows for missing values with the squareroot version of the objective function. It does not include a LOD penalty or a non-negativity constraint on the L matrix.
    • Missing values should be pre-processed as NA.
    • It takes 4 inputs:
      • D the original dataset
      • lambda parameter
      • mu parameter
      • verbose parameter (optional)
    • For more info: ?root_pcp_na
  6. root_pcp_na_nonnegL

    • This includes a non-negativity constraint on the L matrix and allows for missing values with the squareroot version of the objective function. It does not include a LOD penalty.
    • Missing values should be pre-processed as NA.
    • It takes 4 inputs:
      • D the original dataset
      • lambda parameter
      • mu parameter
      • verbose parameter (optional)
    • For more info: ?root_pcp_na_nonnegL
  7. root_pcp_na_nonnegL_lod

    • This includes a non-negativity constraint on the L matrix, allows for missing values, and includes a separate penalty function for values <LOD with the squareroot version of the objective function.
    • Missing values should be pre-processed as NA.
    • Values <LOD should be pre-processed as -1.
    • It takes 5 inputs:
      • D the original dataset
      • lambda parameter
      • mu parameter
      • LOD may be a scalar, vector, or matrix
      • verbose parameter (optional)
    • For more info: ?root_pcp_na_nonnegL_lod
  8. root_pcp_noncvx

    • This replaces the nuclear norm in the objective function with a projection to a lower rank. It does not include a LOD penalty or a non-negativity constraint on the L matrix.
    • It takes 5 inputs:
      • D the original dataset
      • lambda parameter
      • mu parameter
      • r the desired rank
      • verbose parameter (optional)
    • For more info: ?root_pcp_noncvx
  9. root_pcp_noncvx_nonneg

    • This replaces the nuclear norm in the objective function with a projection to a lower rank. It includes a non-negativity constraint on the L matrix. It does not include a LOD penalty.
    • It takes 5 inputs:
      • D the original dataset
      • lambda parameter
      • mu parameter
      • r the desired rank
      • verbose parameter (optional)
    • For more info: ?root_pcp_noncvx_nonneg
  10. root_pcp_noncvx_w_na

    • This replaces the nuclear norm in the objective function with a projection to a lower rank. It does not include a LOD penalty or a non-negativity constraint on the L matrix. It does allow missing values.
    • Missing values should be pre-processed as NA.
    • It takes 5 inputs:
      • D the original dataset
      • lambda parameter
      • mu parameter
      • r the desired rank
      • verbose parameter (optional)
    • For more info: ?root_pcp_noncvx_w_na
  11. root_pcp_noncvx_nonneg_w_na

    • This replaces the nuclear norm in the objective function with a projection to a lower rank. It includes a non-negativity constraint on the L matrix. It does not include a LOD penalty. It does allow missing values.
    • Missing values should be pre-processed as NA.
    • It takes 5 inputs:
      • D the original dataset
      • lambda parameter
      • mu parameter
      • r the desired rank
      • verbose parameter (optional)
    • For more info: ?root_pcp_noncvx_nonneg_w_na
  12. root_pcp_na_nonneg_noncvx_LOD

    • This replaces the nuclear norm in the objective function with a projection to a lower rank. It includes a non-negativity constraint on the L matrix and a LOD penalty. It does allow missing values.
    • Missing values should be pre-processed as NA.
    • It takes 5 inputs:
      • D the original dataset
      • lambda parameter
      • mu parameter
      • r the desired rank
      • LOD may be a scalar, vector, or matrix
      • verbose parameter (optional)
    • For more info: ?root_pcp_na_nonneg_noncvx_LOD

Releases

No releases published

Packages

No packages published

Languages