Skip to content

In this project I design a rumor visualization system for visualizing rumors in social networks during the epidemic. I conduct topic modeling of the rumor dataset and explore the changes in topics over time and region. Geographical rumor distribution is also performed and visualized in the form of China map.

Notifications You must be signed in to change notification settings

Connor-Shen/Visual-Analysis-System-for-Rumor-Propagation-under-Covid-19

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Visual-Analysis-System-for-Rumor-Propagation-under-Covid-19

Topic Modeling of LDA & BERTopic

In this project I design a rumor visualization system for visualizing rumors in social networks during the epidemic. I conduct Topic Modeling of the rumor dataset and compare different method of LDA and BERTopic. LDA is a convenient and intuitive way for topic modeling while BERTopic has better word embedding and can understand the hidden semantics of the document. Topics like " 疫情、核酸、封控" and " 警方、平台、处罚“appear most frequently in our rumor dataset, which is reasonable in the period of epidemic.

LDA result

html version can be found in the figures folder img

Topic modeling heatmap

img

BERTopic result

img

Dimensionality reduction clustering display

img

Geographical Rumor Distribution

Using dynamic topic modeling (DTM), I explore the change of rumor topics over time and region. I divide the rumor topics into four time periods and give reasonable explanations of the changes in topics overtime, like Xi’an’s city closure and Zhejiang’s epidemic policy adjustment. Geographical Rumor Distribution is also conducted in this project. Zhejiang and Shanxi province occupy the largest proportion of rumor data. Meanwhile, I perform a geographic analysis based on different rumor topics like " 疫情", " 贷款" and visualize them in the form of China map. img

User Network & Community Detection

Based on the 18 users’ browse records, I build a user network and compute the degree centrality, betweenness centrality and rumor preference of each user. Community detection using the Louvain algorithm is also performed to demonstrate deeper user connections. Popular rumor data is specially listed according to the number of likes. Through topical modeling of popular rumor data and media analysis, we have a better understanding of the spread of 16 rumors and features of popular rumor. img

About

In this project I design a rumor visualization system for visualizing rumors in social networks during the epidemic. I conduct topic modeling of the rumor dataset and explore the changes in topics over time and region. Geographical rumor distribution is also performed and visualized in the form of China map.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published