- Free software: MIT license
- Documentation: https://datenguidepy.readthedocs.io/
The package provides easy access to German publicly available regional statistics. It does so by providing a wrapper for the GraphQL API of the Datenguide project.
- Overview of available statistics and regions:
- The package provides DataFrames with the available statistics and regions, which can be queried by the user without having to refer to expert knowledge on regional statistics or the documentation of the underlying GraphQL API
- Build and Execute Queries:
- The package provides the user an object oriented interface to build queries that fetch certain statistics and return the results as a pandas DataFrame for further analysis.
- Automatic inclusion of relevant meta data
- Queries automatically retrieve some meta data along with the actual data to give the user more convenient access to the statistics without having to worry about too many technichal details
- Full fidelity data
- The package provides full fidelity data access to the datenguide API. This allows all use cases to use precicely the data that they need if it is available. It also means that most data cleaning has to be done by the user.
To use the package install the package (command line):
pip install datenguidepy
To see the package work and obtain a DataFrame containing some statistics, the followin constitutes a minimal example.
from datenguidepy import Query
q = Query.region('01')
q.add_field('BEV001')
result_df = q.results()
These examples is intendend to illustrate many of the package's features at the same time. The idea is to give an impression of some of the possibilities. A more detailed explanation of the functionality can be found in the the rest of the documentation.
q = Query.region(['02','11'])
stat = q.add_field('BEVSTD')
stat.add_args({'year' : [2011,2012]})
stat2 = q.add_field('AI1601')
stat2.add_args({'year' : [2011,2012]})
q.results(
verbose_statistics = True,
add_units = True,
).iloc[:,:7]
id | name | year | Verfügbares Einkommen je Einwohner (AI1601) | AI1601_unit | Bevölkerungsstand (BEVSTD) | BEVSTD_unit | |
---|---|---|---|---|---|---|---|
0 | 02 | Hamburg | 2011 | 22695 | EUR | 1718187 | Anzahl |
1 | 02 | Hamburg | 2012 | 22971 | EUR | 1734272 | Anzahl |
0 | 11 | Berlin | 2011 | 18183 | EUR | 3326002 | Anzahl |
1 | 11 | Berlin | 2012 | 18380 | EUR | 3375222 | Anzahl |
q = Query.region('11')
stat = q.add_field('BEVSTD')
stat.add_args({
'GES' : 'GESW',
'statistics' : 'R12411',
'NAT' : 'ALL',
'year' : [1995,1996]
})
stat.add_field('GES')
stat.add_field('NAT')
q.results(verbose_enums = True).iloc[:,:6]
id | name | GES | NAT | year | BEVSTD | |
---|---|---|---|---|---|---|
0 | 11 | Berlin | weiblich | Ausländer(innen) | 1995 | 191378 |
1 | 11 | Berlin | weiblich | Deutsche | 1995 | 1605762 |
2 | 11 | Berlin | weiblich | Gesamt | 1995 | 1797140 |
3 | 11 | Berlin | weiblich | Deutsche | 1996 | 1590407 |
4 | 11 | Berlin | weiblich | Ausländer(innen) | 1996 | 195301 |
5 | 11 | Berlin | weiblich | Gesamt | 1996 | 1785708 |
Get information on region ids
# from datenguidepy import get_regions
get_regions()
Use pandas query() functionality to get specific regions. E.g., if you want to get all IDs on "Bundeländer" use. For more information on "nuts" levels see Wikipedia.
get_regions().query("level == 'nuts1'")
Get information on statistic shortnames
# from datenguidepy import get_statistics
get_statistics()
# return statistical descriptions in English
get_statistics(target_language = 'en')
Get information on single fields
You can further information about description, possible arguments, fields and enum values on a field you added to a query.
q = Query.region("01")
stat = q.add_field("BEV001")
stat.get_info()
For detailed examples see the notebooks within the use_case folder.
For a detailed documentation of all statistics and fields see the Datenguide API.
All this builds on the great work of Datenguide and their GraphQL API datenguide/datenguide-api
The data is retrieved via the Datenguide API from the "Statistische Ämter des Bundes und der Länder". Data being used via this package has to be credited according to the "Datenlizenz Deutschland – Namensnennung – Version 2.0".
This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.