Skip to content
/ nen Public

Neural Network library with with native CPU/GPU bindings and learning algorithms choice

Notifications You must be signed in to change notification settings

DEgITx/nen

Repository files navigation

NEN - Fast and Light Neural Network Library

CircleCI Build Status Appveyor Build Status Travis Build Status

Neural Network library with with native CPU/GPU bindings and learning algorithms choice.

Instalation

npm install nen

Quick start

const NEuralNetwork = require('nen');

// create neural network 2x4 size
const network = NEuralNetwork(
	2, // with 2 inputs
	1, // 1 output
	2, // 2 hidden perceptron layers (width)
	4 // 4 perceptrons per layer (height)
);
// new NEuralNetwork(...) also acceptable

// set learning rate of the network
network.setRate(0.02); // default is 0.02

// now let input XOR learning data

// learning set from 4 lines
const inputData = [
	[0, 1], 
	[1, 1], 
	[0, 0], 
	[1, 0]
]

const outputData = [
	[1], // 0 xor 1 = 1
	[0], // 1 xor 1 = 0
	[0], // 0 xor 0 = 0
	[1]  // 1 xor 0 = 1
]

// start learning process until reaching average 0.5% errors (0.005)
const errors = network.train(
	inputData, 
	outputData, 
	{ error: 0.5, sync: true }
);

// lets try now our data through learned neural network
const output = network.forward([0, 1]);

console.log(output) // [ 0.9451534677309323 ]
// pretty close to 1 - good :)

Performance

hidden layers size: width x height

rate: 0.02

error: 0.005

algorithm: 3 (default)

network size iterations time
1x4 3132 5.319ms
2x4 1512 5.163ms
4x4 1968 13.963ms
1x50 1584 29.877ms
3x12 1000 30.376ms

API

train( [inputData], [outputData], options )

train network with input and output data

returns Promise by default or errors array if sync setted to true in options

options:

  • sync - is synchronously call (default: false) [or return Promise]
  • error - min percent of errors until finish (default: 0 - one operation)
  • iterations - iteration limitation (full cycle) (default: 0 - unlimit)
  • iteration : Function - callback that called per full iteration cycle

Note: without "error" and "iterations" option train() don't start learning cycle. You can set those values or start cycle manually (slower)

train( fitness: Function, error: Function, options )

train using fitness function

forward( [inputData] )

forward input data through network and return output result in array

forward( [inputData], wId = undefined )

forward input data through wId network (userfull for fitness function learning)

setRate( rate )

set learting rate default: 0.02

setAlgorithm( algorithm )

set learning algorithm default: 3

setActivation( activationType )

set actionvation function

  • 0 - Logistic (data range: [0, 1])
  • 1 - Hyperbolic tangent (data range: [-1, 1])
  • 2 - Identity (data range: (-∞, +∞))
  • 3 - Rectified linear unit (data range: [0, +∞))

default: 0 - Logistic

error( [outputData] )

get errors array from last forwarding

error( [outputData], [inputData], wId = undefined )

forward input data through the network and return errors

iterations()

get number of iterations from last learning process (each sample from epoch is count)

epochCount()

get epoch number (each sample set in epoch is count as one iteration)

save( fileName )

save current neural network to file

load( fileName )

load neural network from file

loadData( fileName )

load training data from file

Every line contain inputs and appropriate outputs:

1: input1_1 input1_2 ... input1_N output1_1 output1_2 ... input1_M

2: input2_1 input2_2 ... input2_N output2_1 output2_2 ... input2_M

...

setMoment( moment )

set moment factor

default: 0.3

setDEpsilon( dEspsilon )

set divider epsilon

default: 10^-11

setPopulation( populationSize )

population size for genetic algorithm

default: 10

setElitePart( populationPart )

population part as elite part

default: 3 (means 1/3 of population)

setShuffle( shuffle )

shuffle data between each iteration

default: true

setMultiThreads( multi )

Enable multithread mini-batch learning. For more stable but slower learning disable this option.

default: true

Fitness Function learning example

Sometimes we don't know exact input/output values, but know that neural network A better then neural network B. For such cases we can compare two neural networks for best results using genetic algorithms and fitness compare function

network.setRate(0.3) // set learning rate

let errors = [] // aray represents all errors of input data
let error = 1.0 // average error of input data

network.train(
	// compare network "a" with network "b" for set element number "i"
	(a, b, iteration) => {
		// get input data index from current iteration
		const i = iteration % inputData.length;
		// forward inputData through "a" network and get error for outputData
		const errorA = network.error(outputData[i], inputData[i], a);
		// forward inputData through "b" network and get error for outputData
		const errorB = network.error(outputData[i], inputData[i], b);
		// network A must be BETTER then network B
		return errorA < errorB;
	}, 
	// to know when to stop learning process send a callback
	// with represents average error from iteration
	(iteration) => {
		// get input data index from current iteration
		const i = iteration % inputData.length;
		// forward input values and get results
		const values = network.forward(inputData[i]);
		// get errors from last forwarding
		errors[i] = network.error(outputData[i]);
		// calculate average error
		if(i == errors.length - 1) // calucate error only on last input/output element
		{
			for(const e of errors)
				error += e
			error /= errors.length
		}
		// return average error to know when to stop learning process
		return error
	},
	{
		error: 0.5, // learn process until reaching 0.5% errors
		sync: true // function call synchronously
	}
)

console.log(network.forward([0, 1])) // [ 0.9999999999942144 ]
console.log(network.forward([0, 0])) // [ 9.965492560315975e-10 ]

Save/Load trained neural network

This example contains async train call

const network = NEuralNetwork(2, 1, 2, 4) // create neural network

// learn data
const inputData = [
	[0, 1], 
	[1, 1], 
	[0, 0], 
	[1, 0]
]
const outputData = [
	[1], // 0 xor 1 = 1
	[0], // 1 xor 1 = 0
	[0], // 0 xor 0 = 0
	[1]  // 1 xor 0 = 1
]

// create second neural network
// doesn't matter which size (it will be resized after load call)
const network2 = NEuralNetwork(2, 1, 2, 4)

const f = async () => {
	// train until 0.5% errors
	await network.train(inputData, outputData, {error: 0.5})
	// save trained network to file
	network.save('xor.nen')
	// load network2 from file 
	network2.load('xor.nen')
	
	// result
	console.log(network.forward([0, 1])) // [ 0.9097776354174257 ]
	console.log(network2.forward([0, 1])) // [ 0.909777584133939 ]
}
f()

About

Neural Network library with with native CPU/GPU bindings and learning algorithms choice

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published