This is Pytorch implementation of baselines in air quality prediction domain with the following paper:
- LSTM: models/lstm
- CNN-LSTM: models/cnn-lstm
- GA-Encoder-Decoder: models/encoder-decoder
- GC-LSTM: models/gc-lstm
- SpAttRNN: models/spattrnn
- AC-LSTM: models/ac-lstm
- GeoMAN: models/geoman
- MAGAN: models/magan
- IMDA-VAE: models/imda-vae
- DAQFF: models/daqff
- Multitask LSTM Autoencoder: models/mlae
Follow https://docs.wandb.ai/guides/sweeps/quickstart
- Define cac tham so can chay trong wandb_config
- Tao sweep instance wandb sweep link_to_wandb_config.yaml
- main_with_args.py: Them cac tham so can tinh chinh trong arg_parse
- supervisor.py: Sua config tham khao theo lstm/supervisor.py
- Sua cac config
- Tai ham train, return val_loss cuoi cung
- Chay command de run sweep
- Vao link de xem ket qua chay
LSTM: Train: python main.py --model=lstm --input_len=48 --output_len=1 --train_ratio=1 --target_station=all
Encoder-Decoder Train: python main.py --model=encoder_decoder --input_len=48 --output_len=1 --train_ratio=1 --target_station=all
SAER: - ID: ja5tloix - Command: wandb agent aiotlab/Air-Quality-Prediction-Benchmark/ja5tloix - Link: https://wandb.ai/aiotlab/Air-Quality-Prediction-Benchmark/sweeps/ja5tloix