Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added a next_observations field to RolloutBufferSamples (closes #1328) #1329

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion docs/misc/changelog.rst
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@ New Features:
^^^^^^^^^^^^^
- Added ``repeat_action_probability`` argument in ``AtariWrapper``.
- Only use ``NoopResetEnv`` and ``MaxAndSkipEnv`` when needed in ``AtariWrapper``
- Added ``next_observations`` and ``has_next_observation`` fields to ``RolloutBufferSamples`` (@eohomegrownapps)

`SB3-Contrib`_
^^^^^^^^^^^^^^
Expand Down Expand Up @@ -1227,4 +1228,4 @@ And all the contributors:
@Gregwar @ycheng517 @quantitative-technologies @bcollazo @git-thor @TibiGG @cool-RR @MWeltevrede
@Melanol @qgallouedec @francescoluciano @jlp-ue @burakdmb @timothe-chaumont @honglu2875 @yuanmingqi
@anand-bala @hughperkins @sidney-tio @AlexPasqua @dominicgkerr @Akhilez @Rocamonde @tobirohrer @ZikangXiong
@DavyMorgan @luizapozzobon @Bonifatius94 @theSquaredError
@DavyMorgan @luizapozzobon @Bonifatius94 @theSquaredError @eohomegrownapps
18 changes: 18 additions & 0 deletions stable_baselines3/common/buffers.py
Original file line number Diff line number Diff line change
Expand Up @@ -459,6 +459,11 @@ def get(self, batch_size: Optional[int] = None) -> Generator[RolloutBufferSample

for tensor in _tensor_names:
self.__dict__[tensor] = self.swap_and_flatten(self.__dict__[tensor])

is_terminal = np.roll(self.episode_starts, -1, axis=0)
is_terminal[-1] = np.ones_like(is_terminal[-1])
self.has_next_observation = 1.0 - self.swap_and_flatten(is_terminal)

self.generator_ready = True

# Return everything, don't create minibatches
Expand All @@ -475,8 +480,11 @@ def _get_samples(
batch_inds: np.ndarray,
env: Optional[VecNormalize] = None,
) -> RolloutBufferSamples: # type: ignore[signature-mismatch] #FIXME
n = self.observations.shape[0]
data = (
self.observations[batch_inds],
self.observations[(batch_inds + self.n_envs) % n],
self.has_next_observation[batch_inds].flatten(),
self.actions[batch_inds],
self.values[batch_inds].flatten(),
self.log_probs[batch_inds].flatten(),
Expand Down Expand Up @@ -765,6 +773,11 @@ def get(

for tensor in _tensor_names:
self.__dict__[tensor] = self.swap_and_flatten(self.__dict__[tensor])

is_terminal = np.roll(self.episode_starts, -1, axis=0)
is_terminal[-1] = np.ones_like(is_terminal[-1])
self.has_next_observation = 1.0 - self.swap_and_flatten(is_terminal)

self.generator_ready = True

# Return everything, don't create minibatches
Expand All @@ -781,8 +794,13 @@ def _get_samples(
batch_inds: np.ndarray,
env: Optional[VecNormalize] = None,
) -> DictRolloutBufferSamples: # type: ignore[signature-mismatch] #FIXME
n = self.actions.shape[0]
return DictRolloutBufferSamples(
observations={key: self.to_torch(obs[batch_inds]) for (key, obs) in self.observations.items()},
next_observations={
key: self.to_torch(obs[(batch_inds + self.n_envs) % n]) for (key, obs) in self.observations.items()
},
has_next_observation=self.to_torch(self.has_next_observation[batch_inds].flatten()),
actions=self.to_torch(self.actions[batch_inds]),
old_values=self.to_torch(self.values[batch_inds].flatten()),
old_log_prob=self.to_torch(self.log_probs[batch_inds].flatten()),
Expand Down
4 changes: 4 additions & 0 deletions stable_baselines3/common/type_aliases.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,8 @@

class RolloutBufferSamples(NamedTuple):
observations: th.Tensor
next_observations: th.Tensor
has_next_observation: th.Tensor
actions: th.Tensor
old_values: th.Tensor
old_log_prob: th.Tensor
Expand All @@ -38,6 +40,8 @@ class RolloutBufferSamples(NamedTuple):

class DictRolloutBufferSamples(NamedTuple):
observations: TensorDict
next_observations: TensorDict
has_next_observation: th.Tensor
actions: th.Tensor
old_values: th.Tensor
old_log_prob: th.Tensor
Expand Down
31 changes: 30 additions & 1 deletion tests/test_buffers.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@

from stable_baselines3.common.buffers import DictReplayBuffer, DictRolloutBuffer, ReplayBuffer, RolloutBuffer
from stable_baselines3.common.env_util import make_vec_env
from stable_baselines3.common.type_aliases import DictReplayBufferSamples, ReplayBufferSamples
from stable_baselines3.common.type_aliases import DictReplayBufferSamples, DictRolloutBufferSamples, ReplayBufferSamples
from stable_baselines3.common.utils import get_device
from stable_baselines3.common.vec_env import VecNormalize

Expand Down Expand Up @@ -139,3 +139,32 @@ def test_device_buffer(replay_buffer_cls, device):
assert value[key].device.type == desired_device
elif isinstance(value, th.Tensor):
assert value.device.type == desired_device


@pytest.mark.parametrize("rollout_buffer_cls", [RolloutBuffer, DictRolloutBuffer])
def test_next_observations(rollout_buffer_cls):
env = {RolloutBuffer: DummyEnv, DictRolloutBuffer: DummyDictEnv}[rollout_buffer_cls]
env = make_vec_env(env)

buffer = rollout_buffer_cls(100, env.observation_space, env.action_space, device="cpu")

obs = env.reset()
for _ in range(100):
action = env.action_space.sample()
next_obs, reward, done, info = env.step(action)
values, log_prob = th.zeros(1), th.ones(1)
if isinstance(obs, dict):
buffer.add(obs, action, reward, (obs["observation"] == 1.0), values, log_prob)
else:
buffer.add(obs, action, reward, (obs == 1.0), values, log_prob)
obs = next_obs

data = buffer.get(50)
for dp in data:
if isinstance(dp, DictRolloutBufferSamples):
for k in dp.observations.keys():
assert th.equal((dp.observations[k] % 5) + 1, dp.next_observations[k])
assert th.equal(th.flatten(dp.observations[k] != 5), dp.has_next_observation)
else:
assert th.equal((dp.observations % 5) + 1.0, dp.next_observations)
assert th.equal(th.flatten(dp.observations != 5), dp.has_next_observation)