Skip to content

SchNetPack - Deep Neural Networks for Atomistic Systems

License

Notifications You must be signed in to change notification settings

DONG2121/schnetpack

 
 

Repository files navigation

SchNetPack - Deep Neural Networks for Atomistic Systems

Build Status Code style: black

SchNetPack aims to provide accessible atomistic neural networks that can be trained and applied out-of-the-box, while still being extensible to custom atomistic architectures.

Major update! Breaking changes!

You can find the old SchNetPack 1.0 in the schnetpack1.0 branch

Features
  • SchNet - an end-to-end continuous-filter CNN for molecules and materials [1-3]
  • PaiNN - equivariant message-passing for molecules and materials [4]
  • Output modules for dipole moments, polarizability, stress, and general response properties
  • Modules for electrostatics, Ewald summation, ZBL repulsion
  • GPU-accelerated molecular dynamics code incl. path-integral MD, thermostats, barostats
Requirements:
  • python 3.8
  • ASE
  • numpy
  • PyTorch 1.9
  • hydra

Note: We recommend using a GPU for training the neural networks.

Installation

Install with pip

pip install schnetpack

Install from source

Clone the repository

git clone https://github.com/atomistic-machine-learning/schnetpack.git
cd schnetpack

Install requirements

pip install -r requirements.txt

Install SchNetPack

pip install .

You're ready to go!

Getting started

QM9 example

Under construction. For a first test, use:

spktrain experiment=qm9 model/representation=painn

Documentation

For the full API reference, visit our documentation.

If you are using SchNetPack in your research, please cite:

K.T. Schütt, P. Kessel, M. Gastegger, K. Nicoli, A. Tkatchenko, K.-R. Müller. SchNetPack: A Deep Learning Toolbox For Atomistic Systems. J. Chem. Theory Comput. 10.1021/acs.jctc.8b00908 arXiv:1809.01072. (2018)

Acknowledgements

CLI and hydra configs for PyTorch Lightning are adapted from this template:

References

  • [1] K.T. Schütt. F. Arbabzadah. S. Chmiela, K.-R. Müller, A. Tkatchenko.
    Quantum-chemical insights from deep tensor neural networks. Nature Communications 8. 13890 (2017)
    10.1038/ncomms13890

  • [2] K.T. Schütt. P.-J. Kindermans, H. E. Sauceda, S. Chmiela, A. Tkatchenko, K.-R. Müller.
    SchNet: A continuous-filter convolutional neural network for modeling quantum interactions. Advances in Neural Information Processing Systems 30, pp. 992-1002 (2017) Paper

  • [3] K.T. Schütt. P.-J. Kindermans, H. E. Sauceda, S. Chmiela, A. Tkatchenko, K.-R. Müller.
    SchNet - a deep learning architecture for molecules and materials. The Journal of Chemical Physics 148(24), 241722 (2018) 10.1063/1.5019779

  • [4] K. T. Schütt, O. T. Unke, M. Gastegger
    Equivariant message passing for the prediction of tensorial properties and molecular spectra. International Conference on Machine Learning (pp. 9377-9388). PMLR, Paper.

About

SchNetPack - Deep Neural Networks for Atomistic Systems

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%