This project demonstrates tag classification and Point of Interest (POI) extraction on Android devices, using optimized models for high-speed performance.
-
Download the Models:
- The demo models are available for download here.
-
Setup:
- After downloading, place the models into the
assets
folder. - Decompress the
*.so
zip file stored in thelibs/arm64-v8a
folder.
- After downloading, place the models into the
-
Model Information:
- The demo model, named RexUniNLU, is converted from ModelScope and has undergone code optimizations for extreme execution speed.
- The inputs and outputs of this demo model differ slightly from the original version.
-
ONNX Runtime Adaptation:
- To better adapt to ONNX Runtime on Android, dynamic axes were not used during export. As a result, the exported ONNX model may not be optimal for x86_64 systems.
- We plan to make the export method public in the future.
-
Performance:
- A single inference takes about 42ms, and typically 3 rounds are required to complete classification and extraction tasks.
-
Limitations:
- The REX model currently supports Chinese text exclusively.
- Explore more projects: https://dakeqq.github.io/overview/
该项目在Android设备上展示了标签分类和兴趣点(POI)提取,使用经过优化的模型以实现高速度性能。
-
下载模型:
-
设置:
- 下载后,请将模型文件放入
assets
文件夹。 - 解压存放在
libs/arm64-v8a
文件夹中的*.so
压缩文件。
- 下载后,请将模型文件放入
-
模型信息:
- 演示模型名为RexUniNLU,它是从ModelScope转换来的,并经过代码优化,以实现极致执行速度。
- 因此,演示模型的输入输出与原始模型略有不同。
-
ONNX Runtime 适配:
- 为了更好地适配ONNX Runtime-Android,导出时未使用动态轴。因此,导出的ONNX模型对x86_64可能不是最佳选择。
- 我们计划在未来公开转换导出的方法。
-
性能:
- 一次推理大约需要42毫秒。通常需要3轮才能完成分类和提取任务。
-
限制:
- REX模型现在仅支持中文文本。