Skip to content

Commit

Permalink
Merge pull request #21 from warisa-r/PERK_p2p3_Single
Browse files Browse the repository at this point in the history
Add constructor of PERK3
  • Loading branch information
DanielDoehring authored Feb 18, 2024
2 parents 6a31a0b + de86860 commit 6436708
Show file tree
Hide file tree
Showing 4 changed files with 255 additions and 130 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,6 @@
# Since these FMAs can increase the performance of many numerical algorithms,
# we need to opt-in explicitly.
# See https://ranocha.de/blog/Optimizing_EC_Trixi for further details.
include("polynomial_optimizer.jl")
@muladd begin

abstract type PERK end
Expand Down
195 changes: 158 additions & 37 deletions src/time_integration/paired_explicit_runge_kutta/methods_PERK3.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,43 +2,152 @@
# Since these FMAs can increase the performance of many numerical algorithms,
# we need to opt-in explicitly.
# See https://ranocha.de/blog/Optimizing_EC_Trixi for further details.
using NLsolve
@muladd begin

function ComputePERK3_ButcherTableau(NumStages::Int, BasePathMonCoeffs::AbstractString, cS2::Float64)
function f_own(a_unknown, num_stages, num_stage_evals, mon_coeffs)
c_s2 = 1 # c_s2 = c_ts(S-2)
c_ts = c_own(c_s2, num_stages) # ts = timestep

c_eq = zeros(num_stage_evals - 2) # Add equality constraint that c_s2 is equal to 1
# Both terms should be present
for i in 1:(num_stage_evals - 4)
term1 = a_unknown[num_stage_evals - 1]
term2 = a_unknown[num_stage_evals]
for j in 1:i
term1 *= a_unknown[num_stage_evals - 1 - j]
term2 *= a_unknown[num_stage_evals - j]
end
term1 *= c_ts[num_stages - 2 - i] * 1/6
term2 *= c_ts[num_stages - 1 - i] * 4/6

# c Vector form Butcher Tableau (defines timestep per stage)
c = zeros(NumStages)
for k in 2:NumStages-2
c[k] = cS2 * (k - 1)/(NumStages - 3) # Equidistant timestep distribution (similar to PERK2)
end
c_eq[i] = mon_coeffs[i] - (term1 + term2)
end

# Highest coefficient: Only one term present
i = num_stage_evals - 3
term2 = a_unknown[num_stage_evals]
for j in 1:i
term2 *= a_unknown[num_stage_evals - j]
end
term2 *= c_ts[num_stages - 1 - i] * 4/6

c_eq[i] = mon_coeffs[i] - term2

c_eq[num_stage_evals - 2] = 1.0 - 4 * a_unknown[num_stage_evals] - a_unknown[num_stage_evals - 1]

return c_eq
end

function c_own(c_s2, num_stages)
c_ts = zeros(num_stages)

# Last timesteps as for SSPRK33
c_ts[num_stages] = 0.5
c_ts[num_stages - 1] = 1

# Linear increasing timestep for remainder
for i in 2:num_stages-2
c_ts[i] = c_s2 * (i-1)/(num_stages - 3)
end
return c_ts
end

function compute_PERK3_butcher_tableau(num_stages, num_stage_evals, semi::AbstractSemidiscretization)

# Initialize array of c
c_ts = c_own(1.0, num_stages)

# Initialize the array of our solution
a_unknown = zeros(num_stage_evals)

# Special case of e = 3
if num_stage_evals == 3
a_unknown = [0, c_ts[2], 0.25]

else
# Calculate coefficients of the stability polynomial in monomial form
cons_order = 3
dt_max = 1.0
dt_eps = 1e-9
filter_threshold = 1e-12

# Compute spectrum
J = jacobian_ad_forward(semi)
eig_vals = eigvals(J)
num_eig_vals, eig_vals = filter_eigvals(eig_vals, filter_threshold)

mon_coeffs, dt, _ = bisection(cons_order, num_eig_vals, num_stages, dt_max, dt_eps, eig_vals)
mon_coeffs = undo_normalization!(cons_order, num_stages, mon_coeffs)

# Define the objective_function
function objective_function(x)
return f_own(x, num_stages, num_stage_evals, mon_coeffs)
end

# Call nlsolver to solve repeatedly until the result is not NaN or negative values
is_sol_valid = false
while !is_sol_valid
# Initialize initial guess
x0 = 0.1 .* rand(num_stage_evals)
x0[1] = 0.0
x0[2] = c_ts[2]

sol = nlsolve(objective_function, x0, method = :trust_region, ftol = 1e-15, iterations = 10^4, xtol = 1e-13)

a_unknown = sol.zero

# Check if the values a[i, i-1] >= 0.0 (which stem from the nonlinear solver) and subsequently c[i] - a[i, i-1] >= 0.0
is_sol_valid = all(x -> !isnan(x) && x >= 0, a_unknown[3:end]) && all(x -> !isnan(x) && x >= 0 , c_ts[3:end] .- a_unknown[3:end])
end
end

println("a_unknown")
println(a_unknown[3:end]) # To debug

a_matrix = zeros(num_stages - 2, 2)
a_matrix[:, 1] = c_ts[3:end]
a_matrix[:, 1] -= a_unknown[3:end]
a_matrix[:, 2] = a_unknown[3:end]

return a_matrix, c_ts
end

function compute_PERK3_butcher_tableau(num_stages::Int, base_path_mon_coeffs::AbstractString, c_s2::Float64)

# c Vector form Butcher Tableau (defines timestep per stage)
c = zeros(num_stages)
for k in 2:num_stages-2
c[k] = c_s2 * (k - 1)/(num_stages - 3) # Equidistant timestep distribution (similar to PERK2)
end

# Original third order proposed PERK
#=
c[NumStages - 1] = 1.0/3.0
c[NumStages] = 1.0
=#
# Own third order PERK based on SSPRK33
c[NumStages - 1] = 1.0
c[NumStages] = 0.5

println("Timestep-split: "); display(c); println("\n")
# Original third order proposed PERK
#=
c[num_stages - 1] = 1.0/3.0
c[num_stages] = 1.0
=#
# Own third order PERK based on SSPRK33
c[num_stages - 1] = 1.0
c[num_stages] = 0.5

println("Timestep-split: "); display(c); println("\n")

# - 2 Since First entry of A is always zero (explicit method) and second is given by c_2 (consistency)
CoeffsMax = NumStages - 2
# - 2 Since First entry of A is always zero (explicit method) and second is given by c_2 (consistency)
coeffs_max = num_stages - 2

AMatrix = zeros(CoeffsMax, 2)
AMatrix[:, 1] = c[3:end]
a_matrix = zeros(coeffs_max, 2)
a_matrix[:, 1] = c[3:end]

PathMonCoeffs = BasePathMonCoeffs * "a_" * string(NumStages) * "_" * string(NumStages) * ".txt"
NumMonCoeffs, A = read_file(PathMonCoeffs, Float64)
@assert NumMonCoeffs == CoeffsMax
path_mon_coeffs = base_path_mon_coeffs * "a_" * string(num_stages) * "_" * string(num_stages) * ".txt"
num_mon_coeffs, A = read_file(path_mon_coeffs, Float64)
@assert num_mon_coeffs == coeffs_max

AMatrix[:, 1] -= A
AMatrix[:, 2] = A
a_matrix[:, 1] -= A
a_matrix[:, 2] = A

println("A matrix: "); display(AMatrix); println()
println("A matrix: "); display(AMatrix); println()

return AMatrix, c
return a_matrix, c
end

"""
Expand All @@ -53,20 +162,32 @@ CarpenterKennedy2N{54, 43} methods.
"""

mutable struct PERK3 <: PERKSingle
const NumStages::Int
const num_stages::Int

a_matrix::Matrix{Float64}
c::Vector{Float64}

AMatrix::Matrix{Float64}
c::Vector{Float64}
# Constructor for previously computed A Coeffs
function PERK3(num_stages_::Int, base_path_mon_coeffs_::AbstractString, c_s2_::Float64=1.0)
newPERK3 = new(num_stages_)

# Constructor for previously computed A Coeffs
function PERK3(NumStages_::Int, BasePathMonCoeffs_::AbstractString, cS2_::Float64=1.0)
newPERK3.a_matrix, newPERK3.c = compute_PERK3_butcher_tableau(num_stages_, base_path_mon_coeffs_, c_s2_)

return newPERK3
end

newPERK3 = new(NumStages_)
# Constructor that computes Butcher matrix A coefficients from a semidiscretization
function PERK3(num_stages_::Int, num_stage_evals_ ::Int, semi_::AbstractSemidiscretization)

newPERK3 = new(num_stages_)

newPERK3.a_matrix, newPERK3.c = compute_PERK3_butcher_tableau(num_stages_, num_stage_evals_, semi_)

display(newPERK3.a_matrix)

return newPERK3
end

newPERK3.AMatrix, newPERK3.c =
ComputePERK3_ButcherTableau(NumStages_, BasePathMonCoeffs_, cS2_)
return newPERK3
end
end # struct PERK3


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -7,5 +7,6 @@

include("methods_PERK2.jl")
include("methods_PERK3.jl")
include("polynomial_optimizer.jl")

end # @muladd
Loading

0 comments on commit 6436708

Please sign in to comment.