Skip to content

Commit

Permalink
More efficient PERK implementation (trixi-framework#2180)
Browse files Browse the repository at this point in the history
* More efficient PERK implementation

* fmt

* test vals

* minor changes

* consistency

* change memory layout

* Time also PERK3

* remove unnecessary stuff

* test resize perk3

* make algorithms immutable
  • Loading branch information
DanielDoehring authored Dec 1, 2024
1 parent 824f7a8 commit 863795e
Show file tree
Hide file tree
Showing 9 changed files with 124 additions and 136 deletions.
4 changes: 2 additions & 2 deletions examples/structured_1d_dgsem/elixir_burgers_perk3.jl
Original file line number Diff line number Diff line change
@@ -1,9 +1,9 @@
# Convex and ECOS are imported because they are used for finding the optimal time step and optimal
# monomial coefficients in the stability polynomial of P-ERK time integrators.
# monomial coefficients in the stability polynomial of PERK time integrators.
using Convex, ECOS

# NLsolve is imported to solve the system of nonlinear equations to find the coefficients
# in the Butcher tableau in the third order P-ERK time integrator.
# in the Butcher tableau in the third order PERK time integrator.
using NLsolve

using OrdinaryDiffEq
Expand Down
2 changes: 1 addition & 1 deletion examples/tree_1d_dgsem/elixir_advection_perk2.jl
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@

# Convex and ECOS are imported because they are used for finding the optimal time step and optimal
# monomial coefficients in the stability polynomial of P-ERK time integrators.
# monomial coefficients in the stability polynomial of PERK time integrators.
using Convex, ECOS

using OrdinaryDiffEq
Expand Down
2 changes: 1 addition & 1 deletion ext/TrixiConvexECOSExt.jl
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
# Package extension for adding Convex-based features to Trixi.jl
module TrixiConvexECOSExt

# Required for coefficient optimization in P-ERK scheme integrators
# Required for coefficient optimization in PERK scheme integrators
if isdefined(Base, :get_extension)
using Convex: MOI, solve!, Variable, minimize, evaluate
using ECOS: Optimizer
Expand Down
2 changes: 1 addition & 1 deletion ext/TrixiNLsolveExt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
module TrixiNLsolveExt

# Required for finding coefficients in Butcher tableau in the third order of
# P-ERK scheme integrators
# PERK scheme integrators
if isdefined(Base, :get_extension)
using NLsolve: nlsolve
else
Expand Down
75 changes: 23 additions & 52 deletions src/time_integration/paired_explicit_runge_kutta/methods_PERK2.jl
Original file line number Diff line number Diff line change
Expand Up @@ -34,8 +34,8 @@ function compute_PairedExplicitRK2_butcher_tableau(num_stages, eig_vals, tspan,
# - 2 Since first entry of A is always zero (explicit method) and second is given by c_2 (consistency)
coeffs_max = num_stages - 2

a_matrix = zeros(coeffs_max, 2)
a_matrix[:, 1] = c[3:end]
a_matrix = zeros(2, coeffs_max)
a_matrix[1, :] = c[3:end]

consistency_order = 2

Expand All @@ -56,8 +56,8 @@ function compute_PairedExplicitRK2_butcher_tableau(num_stages, eig_vals, tspan,
num_monomial_coeffs = length(monomial_coeffs)
@assert num_monomial_coeffs == coeffs_max
A = compute_a_coeffs(num_stages, stage_scaling_factors, monomial_coeffs)
a_matrix[:, 1] -= A
a_matrix[:, 2] = A
a_matrix[1, :] -= A
a_matrix[2, :] = A
end

return a_matrix, c, dt_opt
Expand All @@ -78,8 +78,8 @@ function compute_PairedExplicitRK2_butcher_tableau(num_stages,
# - 2 Since first entry of A is always zero (explicit method) and second is given by c_2 (consistency)
coeffs_max = num_stages - 2

a_matrix = zeros(coeffs_max, 2)
a_matrix[:, 1] = c[3:end]
a_matrix = zeros(2, coeffs_max)
a_matrix[1, :] = c[3:end]

path_monomial_coeffs = joinpath(base_path_monomial_coeffs,
"gamma_" * string(num_stages) * ".txt")
Expand All @@ -91,8 +91,8 @@ function compute_PairedExplicitRK2_butcher_tableau(num_stages,
@assert num_monomial_coeffs == coeffs_max
A = compute_a_coeffs(num_stages, stage_scaling_factors, monomial_coeffs)

a_matrix[:, 1] -= A
a_matrix[:, 2] = A
a_matrix[1, :] -= A
a_matrix[2, :] = A

return a_matrix, c
end
Expand Down Expand Up @@ -131,16 +131,17 @@ optimized for a certain simulation setup (PDE, IC & BC, Riemann Solver, DG Solve
Note: To use this integrator, the user must import the `Convex` and `ECOS` packages.
"""
mutable struct PairedExplicitRK2 <: AbstractPairedExplicitRKSingle
const num_stages::Int
struct PairedExplicitRK2 <: AbstractPairedExplicitRKSingle
num_stages::Int

a_matrix::Matrix{Float64}
c::Vector{Float64}
b1::Float64
bS::Float64
cS::Float64

dt_opt::Union{Float64, Nothing}
end # struct PairedExplicitRK2
end

# Constructor that reads the coefficients from a file
function PairedExplicitRK2(num_stages, base_path_monomial_coeffs::AbstractString,
Expand Down Expand Up @@ -200,9 +201,8 @@ mutable struct PairedExplicitRK2Integrator{RealT <: Real, uType, Params, Sol, F,
finalstep::Bool # added for convenience
dtchangeable::Bool
force_stepfail::Bool
# PairedExplicitRK2 stages:
# Additional PERK register
k1::uType
k_higher::uType
end

function init(ode::ODEProblem, alg::PairedExplicitRK2;
Expand All @@ -211,9 +211,7 @@ function init(ode::ODEProblem, alg::PairedExplicitRK2;
du = zero(u0)
u_tmp = zero(u0)

# PairedExplicitRK2 stages
k1 = zero(u0)
k_higher = zero(u0)
k1 = zero(u0) # Additional PERK register

t0 = first(ode.tspan)
tdir = sign(ode.tspan[end] - ode.tspan[1])
Expand All @@ -226,7 +224,7 @@ function init(ode::ODEProblem, alg::PairedExplicitRK2;
ode.tspan;
kwargs...),
false, true, false,
k1, k_higher)
k1)

# initialize callbacks
if callback isa CallbackSet
Expand Down Expand Up @@ -262,48 +260,21 @@ function step!(integrator::PairedExplicitRK2Integrator)
end

@trixi_timeit timer() "Paired Explicit Runge-Kutta ODE integration step" begin
# k1
integrator.f(integrator.du, integrator.u, prob.p, integrator.t)
@threaded for i in eachindex(integrator.du)
integrator.k1[i] = integrator.du[i] * integrator.dt
end

# Construct current state
@threaded for i in eachindex(integrator.u)
integrator.u_tmp[i] = integrator.u[i] + alg.c[2] * integrator.k1[i]
end
# k2
integrator.f(integrator.du, integrator.u_tmp, prob.p,
integrator.t + alg.c[2] * integrator.dt)

@threaded for i in eachindex(integrator.du)
integrator.k_higher[i] = integrator.du[i] * integrator.dt
end
# First and second stage are identical across all single/standalone PERK methods
PERK_k1!(integrator, prob.p)
PERK_k2!(integrator, prob.p, alg)

# Higher stages
for stage in 3:(alg.num_stages)
# Construct current state
@threaded for i in eachindex(integrator.u)
integrator.u_tmp[i] = integrator.u[i] +
alg.a_matrix[stage - 2, 1] *
integrator.k1[i] +
alg.a_matrix[stage - 2, 2] *
integrator.k_higher[i]
end

integrator.f(integrator.du, integrator.u_tmp, prob.p,
integrator.t + alg.c[stage] * integrator.dt)

@threaded for i in eachindex(integrator.du)
integrator.k_higher[i] = integrator.du[i] * integrator.dt
end
PERK_ki!(integrator, prob.p, alg, stage)
end

@threaded for i in eachindex(integrator.u)
integrator.u[i] += alg.b1 * integrator.k1[i] +
alg.bS * integrator.k_higher[i]
integrator.u[i] += integrator.dt *
(alg.b1 * integrator.k1[i] +
alg.bS * integrator.du[i])
end
end # PairedExplicitRK2 step
end

integrator.iter += 1
integrator.t += integrator.dt
Expand Down
Loading

0 comments on commit 863795e

Please sign in to comment.