-
Notifications
You must be signed in to change notification settings - Fork 0
Handler
参考(转自): https://blog.csdn.net/qq_37321098/article/details/81535449 https://blog.csdn.net/androidsj/article/details/79865091
发送消息and接收消息,具体用法
//传递的data
var bundle = Bundle()
bundle.putString("msg","我可以")
//send data
private lateinit var handler:Handler
var message = handler.obtainMessage()
message.data = bundle
message.what = 123
handler.sendMessage(message)
//receive data
**handler = @SuppressLint("HandlerLeak")**
object :Handler(){
override fun handleMessage(msg: Message){
super.handleMessage(msg)
if (msg.what == 123){
}
}
}
代码里有句提示:
handler = @SuppressLint("HandlerLeak")
表示代码不规范,有内存泄漏的风险,原因:
Handler在Android中用于消息的发送和异步处理,Handler常作为匿名内部类来定义,此时Handler会隐式的持有外部类对象的引用,当外部类关闭时,由于handler持有外部类的引用造成外部类无法被GC回收,这样容易造成内存泄漏;
解决方法:
将其定义成一个静态内部类(此时不会持有外部类对象的引用),在构造方法中传入外部类,并对外部类对象增加一个弱引用,外部类关闭后,即使异步消息未处理完毕,外部类也能被GC回收,从而避免内存泄漏。
代码应该这样写:\
//在外部类里这样写:
companion object {
private class TestHandler(view: FirstFragment) : Handler() {
private val mView = WeakReference(view)
override fun handleMessage(msg: Message?) {
super.handleMessage(msg)
when (msg?.what) {
123 -> {
var bundle = msg.data
var data = bundle.getString("msg")
}
}
}
}
}
另外改下:
private lateinit var handler:TestHandler
public final class Message implements Parcelable {
//用户定义的消息代码,以便接收者能够识别
public int what;
//arg1和arg2是使用成本较低的替代品-也可以用来存储int值
public int arg1;
public int arg2;
//存放任意类型的对象
public Object obj;
//消息触发时间
long when;
//消息携带内容
Bundle data;
//消息响应方
Handler target;
//消息管理器,会关联到一个handler
public Messanger replyTo;
//回调方法
Runnable callback;
//消息存储的链表。这样sPool就成为了一个Messages的缓存链表。
Message next;
//消息池
private static Message sPool;
//消息池的默认大小
private static final int MAX_POOL_SIZE = 50;
//从消息池中获取消息
public static Message obtain() {
synchronized (sPoolSync) {
if (sPool != null) {
Message m = sPool; //从sPool的表头拿出Message
sPool = m.next; //将消息池的表头指向下一个Message
m.next = null; //将取出消息的链表断开
m.flags = 0; // 清除flag----flag标记判断此消息是否正被使用(下方isInUse方法)
sPoolSize--; //消息池可用大小进行减1
return m;
}
}
return new Message(); //消息池为空-直接创建Message
}
//通过标记判断消息是否正被使用
boolean isInUse() {
return ((flags & FLAG_IN_USE) == FLAG_IN_USE);
}
//5.0后为true,之前为false.
private static boolean gCheckRecycle = true;
public void recycle() {
if (isInUse()) {
if (gCheckRecycle) {
throw new IllegalStateException("This message cannot be recycled because it is still in use.");
}
return;
}
recycleUnchecked(); //消息没在使用,回收
}
//对于不再使用的消息,加入到消息池
void recycleUnchecked() {
//将消息标示位置为IN_USE,并清空消息所有的参数。
flags = FLAG_IN_USE;
what = 0;
arg1 = 0;
arg2 = 0;
obj = null;
replyTo = null;
sendingUid = -1;
when = 0;
target = null;
callback = null;
data = null;
synchronized (sPoolSync) {
if (sPoolSize < MAX_POOL_SIZE) {
next = sPool;
sPool = this; //当消息池没有满时,将Message加入消息池
sPoolSize++; //消息池可用大小加1
}
}
}
public final class Looper {
//内部消息队列MessageQueue
final MessageQueue mQueue;
//Looper所在的线程
final Thread mThread;
//Looper的变量存储
static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
//主looper
private static Looper sMainLooper;
//私有构造方法,不能通过New实例化。
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);//创建与其绑定的消息队列MessageQueue
mThread = Thread.currentThread(); //绑定当前线程
}
//子线程的调用----->最终通过prepare(boolean)实例化Looper
public static void prepare() {
prepare(true);
}
//主线程的调用----->最终通过prepare(boolean)实例化Looper
public static void prepareMainLooper() {
prepare(false);
synchronized (Looper.class) {
if (sMainLooper != null) {
throw new IllegalStateException("The main Looper has already been prepared.");
}
sMainLooper = myLooper();//存储区中looper作为主looper
}
}
public static @Nullable Looper myLooper() {
return sThreadLocal.get();
}
//quitAllowed代表是否允许退出,主线程调用为不允许退出,子线程为可退出
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
//看出一个线程只能存在一个Looper-->则调用二次Looper.prepare抛出异常
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));//Looper的变量存储+实例化Looper
}
循环取出messagequeue消息队列中的消息,并分发出去。再把分发后的Message回收到消息池,以便重复利用。
public static void loop() {
final Looper me = myLooper(); //从存储区拿出looper
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue; //获取Looper对象中的消息队列
......
//进入loop的主循环方法
for (;;) {
Message msg = queue.next(); //可能会阻塞
if (msg == null) { //没有消息,则退出循环
return;
}
......
//target是handler,此处用于分发Message
msg.target.dispatchMessage(msg);
......
msg.recycleUnchecked(); //将Message放入消息池
}
}
public final class MessageQueue {
//供native代码使用
@SuppressWarnings("unused")
private long mPtr;
//交给native层来处理的核心方法
private native static long nativeInit();
private native static void nativeDestroy(long ptr);
private native void nativePollOnce(long ptr, int timeoutMillis); //阻塞操作
private native static void nativeWake(long ptr);
private native static boolean nativeIsPolling(long ptr);
private native static void nativeSetFileDescriptorEvents(long ptr, int fd, int events);
Message mMessages;
//消息队列是否可以退出
private final boolean mQuitAllowed;
//构造方法
MessageQueue(boolean quitAllowed) {
mQuitAllowed = quitAllowed;
mPtr = nativeInit(); //通过native方法初始化消息队列,其中mPtr是供native代码使用
}
a) next 方法
//不停提取下一条message
Message next() {
final long ptr = mPtr;
//判断是否退出消息循环
if (ptr == 0) {
return null;
}
int pendingIdleHandlerCount = -1;
//代表下一个消息到来前,还需要等待的时长
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
//native层阻塞cpu。如果被阻塞,唤醒事件队列
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
//如果当前消息是异步消息,都将赋值给prevMsg,过滤掉,直到取到了非异步消息
if (msg != null && msg.target == null) {
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
//获取到了非异步消息
if (msg != null) {
//任务执行时间大于现在的时间
if (now < msg.when) {
//设置下一次轮询的超时时长
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
mBlocked = false;//指定为非阻塞任务
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
//设置消息的使用状态,即flags |= FLAG_IN_USE
msg.markInUse();
return msg; //成功地获取MessageQueue中的下一条即将要执行的消息
}
} else {
//表示消息队列中无消息,会一直等待下去
nextPollTimeoutMillis = -1;
}
......
//IdleHandler为发现线程何时阻塞的回调接口
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; //去除handler引用
boolean keep = false;
//queueIdle返回true会被空闲的处理器处理,false就会被移走
try {
keep = idler.queueIdle(); //idle时执行的方法
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler); //被移走
}
}
}
//重置idle handler个数为0,保证不会再次重复运行
pendingIdleHandlerCount = 0;
nextPollTimeoutMillis = 0;
}
}
next()方法中,做了异步Message消息的判断,特殊的是这个Message没有设置target,即msg.target为null
b)核心的enqueueMessage()方法
boolean enqueueMessage(Message msg, long when) {
// 每一个普通Message必须有一个target-handler
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
//已在使用状态
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
//消息在退出状态->被回收到消息池
if (mQuitting) {
msg.recycle();
return false;
}
//标记使用状态,记录执行时间
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
//p为null代表MessageQueue没有消息或者msg的触发时间是队列中最早的
if (p == null || when == 0 || when < p.when) {
msg.next = p;
mMessages = msg;
needWake = mBlocked; //当阻塞时需要唤醒
} else {
//将消息按时间顺序插入到MessageQueue。
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p;
prev.next = msg;
}
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
队列中的Message触发时间是有先后顺序的。当消息加入消息队列时,会从队列头开始遍历,直到找到消息应该插入的合适位置,以保证所有消息的时间顺序(内部遍历队列中Message,找到when比当前Message的when大的Message,将Message插入到该Message之前,如果没找到则将Message插入到队列最后)。一般是当前队列为空的情况下,next那边会进入睡眠,需要的时候MessageQueue这边会唤醒next方法。 C) removeMessages()和removeCallbacksAndMessages()方法
void removeMessages(Handler h, int what, Object object) {
if (h == null) {
return;
}
synchronized (this) {
Message p = mMessages;
//从消息队列的头部开始,移除所有符合条件的消息
while (p != null && p.target == h && p.what == what
&& (object == null || p.obj == object)) {
Message n = p.next;
mMessages = n;
p.recycleUnchecked();
p = n;
}
//移除剩余的符合要求的消息
while (p != null) {
Message n = p.next;
if (n != null) {
if (n.target == h && n.what == what
&& (object == null || n.obj == object)) {
Message nn = n.next;
n.recycleUnchecked();
p.next = nn;
continue;
}
}
p = n;
}
}
}
void removeCallbacksAndMessages(Handler h, Object object) {
if (h == null) {
return;
}
synchronized (this) {
Message p = mMessages;
while (p != null && p.target == h
&& (object == null || p.obj == object)) {
Message n = p.next;
mMessages = n;
p.recycleUnchecked();
p = n;
}
while (p != null) {
Message n = p.next;
if (n != null) {
if (n.target == h && (object == null || n.obj == object)) {
Message nn = n.next;
n.recycleUnchecked();
p.next = nn;
continue;
}
}
p = n;
}
}
}
a)构造函数
public class Handler {
final Looper mLooper;
final MessageQueue mQueue;
final Callback mCallback; //回调
final boolean mAsynchronous; //是否异步消息
IMessenger mMessenger;
public interface Callback {
//如果不需要进一步的处理,则返回True
public boolean handleMessage(Message msg);
}
//有参构造
public Handler(Looper looper) {
this(looper, null, false);
}
//有参构造
public Handler(Looper looper, Callback callback, boolean async) {
mLooper = looper;
mQueue = looper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
public Handler(Callback callback, boolean async) {
//匿名类、内部类或本地类都必须申明为static,否则会警告可能出现内存泄露
if (FIND_POTENTIAL_LEAKS) {
final Class<? extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
//从Looper类中的(ThreadLocal)获取Looper对象
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException("");
}
mQueue = mLooper.mQueue; //Looper取出消息队列
mCallback = callback; //回调
mAsynchronous = async; //设置消息是否为异步处理方式
}
b)消息的发送
1.post--->调用sendMessageDelayed
public final boolean post(Runnable r){
return sendMessageDelayed(getPostMessage(r), 0);
}
2.postAtTime--->调用sendMessageAtTime
public final boolean postAtTime(Runnable r, long uptimeMillis){
return sendMessageAtTime(getPostMessage(r), uptimeMillis);
}
3.postAtTime--->调用sendMessageAtTime
public final boolean postAtTime(Runnable r, Object token, long uptimeMillis){
return sendMessageAtTime(getPostMessage(r, token), uptimeMillis);
}
4.postDelayed--->调用sendMessageDelayed
public final boolean postDelayed(Runnable r, long delayMillis){
return sendMessageDelayed(getPostMessage(r), delayMillis);
}
5.postAtFrontOfQueue--->调用sendMessageAtFrontOfQueue
public final boolean postAtFrontOfQueue(Runnable r){
return sendMessageAtFrontOfQueue(getPostMessage(r));
}
6.sendMessage--->调用sendMessageDelayed
public final boolean sendMessage(Message msg){
return sendMessageDelayed(msg, 0);
}
7.sendEmptyMessage--->调用sendEmptyMessageDelayed
public final boolean sendEmptyMessage(int what){
return sendEmptyMessageDelayed(what, 0);
}
8.sendEmptyMessageDelayed--->调用sendMessageDelayed
public final boolean sendEmptyMessageDelayed(int what, long delayMillis) {
Message msg = Message.obtain();
msg.what = what;
return sendMessageDelayed(msg, delayMillis);
}
9.sendEmptyMessageAtTime--->调用sendMessageAtTime
public final boolean sendEmptyMessageAtTime(int what, long uptimeMillis) {
Message msg = Message.obtain();
msg.what = what;
return sendMessageAtTime(msg, uptimeMillis);
}
10.sendMessageDelayed--->调用sendMessageAtTime
public final boolean sendMessageDelayed(Message msg, long delayMillis){
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
11.sendMessageAtTime--->调用enqueueMessage
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
12.sendMessageAtFrontOfQueue--->调用enqueueMessage
//FIXME 该方法通过设置消息的触发时间为0,从而使Message加入到消息队列的队头
public final boolean sendMessageAtFrontOfQueue(Message msg) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, 0);
}
13.enqueueMessage调用MessageQueue中的enqueueMessage
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
//uptimeMillis为系统当前的运行时间
return queue.enqueueMessage(msg, uptimeMillis);
}
if (mAsynchronous) {
msg.setAsynchronous(true);
c) 消息的移除--都会调用消息队列中的移除方法
public final void removeCallbacks(Runnable r){
mQueue.removeMessages(this, r, null);
}
public final void removeCallbacks(Runnable r, Object token){
mQueue.removeMessages(this, r, token);
}
public final void removeMessages(int what) {
mQueue.removeMessages(this, what, null);
}
public final void removeMessages(int what, Object object) {
mQueue.removeMessages(this, what, object);
}
public final void removeCallbacksAndMessages(Object token) {
mQueue.removeCallbacksAndMessages(this, token);
}
d)handleMessage(处理消息)和 dispatchMessage(分发消息)
//处理消息
public void handleMessage(Message msg) {
}
//分发消息
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
//当Message存在回调方法,回调方法msg.callback.run()
handleCallback(msg);
} else {
//当Handler存在Callback成员变量时,回调方法mCallback.handleMessage();
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
//Handler子类通过覆写该方法来完成具体的逻辑
handleMessage(msg);
}
}
优先级:
Message的回调方法>Handler的回调方法>Handler的默认方法
- Handler通过sendMessage()方法发送Message到MessageQueue队列
- 当前Thread中Looper通过调用loop(),不断取出达到触发条件的Message,通过对应target(Handler)的dispatchMessage()方法,将Message交给Handler的handleMessage()方法来处理。
- 一个线程对应一个Looper,一个Looper对应一个MessageQueue,一个MessageQueue可以对用多个Message。但是一个Message只能让一个handler来处理(就是Message中target所指定的handler)。
参考:
handler发送异步消息:https://blog.csdn.net/cdecde111/article/details/54670136
https://blog.csdn.net/woshiluoye9/article/details/72544764
http://gityuan.com/2015/12/26/handler-message-framework/
https://blog.csdn.net/iispring/article/details/47180325
https://blog.csdn.net/milllulei/article/details/80927539
https://www.cnblogs.com/angeldevil/p/3340644.html
(IdleHandler)
override fun onDestroy() {
super.onDestroy()
handler.removeMessages(123)
}
退出页面时记得removeMessages,否则会报错This message is already in use