NOTE: This is not official implementation. Original paper is DeepPose: Human Pose Estimation via Deep Neural Networks.
-
Python 2.7.11+
- Chainer 1.5+ (Neural network framework)
- numpy 1.9+
- scipy 0.16+
- scikit-learn 0.15+
- OpenCV 2.4+
pip install chainer
pip install numpy
pip install scipy
pip install scikit-learn
# for python3
conda install -c https://conda.binstar.org/menpo opencv3
# for python2
conda install opencv
bash shells/download.sh
python scripts/flic_dataset.py
python scripts/lsp_dataset.py
python scripts/mpii_dataset.py
This script downloads FLIC-full dataset (http://vision.grasp.upenn.edu/cgi-bin/index.php?n=VideoLearning.FLIC) and perform cropping regions of human and save poses as numpy files into FLIC-full directory. Same processes are performed for LSP, MPII datasets.
-
training images: 18079, test images: 6908
- test images don't have any annotations
- so we split trining imges into training/test joint set
- each joint set has
-
training joint set: 17928, test joint set: 1991
Starting with the prepared shells is the easiest way. If you want to run train.py
with your own settings, please check the options first by python scripts/train.py --help
and modify one of the following shells to customize training settings.
bash shells/train_flic.sh
bash shells/train_lsp.sh
bash shells/train_mpii.sh
-
AlexNet
- batchsize: 128 -> about 2870 MiB
- batchsize: 64 -> about 1890 MiB
- batchsize: 32 (default) -> 1374 MiB
-
ResNet50
- batchsize: 32 -> 6877 MiB
- Go to result dir of a model
python ../../scripts/draw_filters.py
python scripts/evaluate_flic.py \
--model results/AlexNet_2015/AlexNet.py \
--param results/AlexNet_2015/AlexNet_epoch_400.chainermodel \
--datadir data/FLIC-full
--gpu 0 \
--batchsize 128 \
--mode test
python scripts/evaluate_flic.py \
--model results/AlexNet_2015/AlexNet_flic.py \
--param results/AlexNet_2015/AlexNet_epoch_450.chainermodel \
--mode tile \
--n_imgs 25
cd results/AlexNet_2015
bash ../../scripts/create_anime.sh test_450_tiled_pred.jpg test_450_tiled_label.jpg test_450.gif