-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
updates maken alle waterschapsmodellen rekenend. Deze branch nog niet weggooien; Basin / Area moet nog op orde gemaakt worden voor NZV, WDOD en HeA: <img width="434" alt="image" src="https://github.com/user-attachments/assets/1a43f1b9-cc4e-40c2-8e97-6e8f94aba8de"> --------- Co-authored-by: ngoorden <[email protected]>
- Loading branch information
1 parent
cc77237
commit 31b72df
Showing
28 changed files
with
1,554 additions
and
69 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,243 @@ | ||
# %% Import Libraries and Initialize Variables | ||
import geopandas as gpd | ||
import numpy as np | ||
import pandas as pd | ||
from ribasim.nodes import level_boundary, outlet | ||
|
||
from ribasim_nl import CloudStorage, Model, NetworkValidator | ||
|
||
# Initialize cloud storage and set authority/model parameters | ||
cloud_storage = CloudStorage() | ||
authority_name = "AaenMaas" | ||
model_short_name = "aam" | ||
|
||
# Define the path to the Ribasim model configuration file | ||
ribasim_model_dir = cloud_storage.joinpath(authority_name, "modellen", f"{authority_name}_fix_model_network") | ||
ribasim_model_path = ribasim_model_dir / f"{model_short_name}.toml" | ||
model = Model.read(ribasim_model_path) | ||
network_validator = NetworkValidator(model) | ||
# %% Load Input Geospatial Files | ||
drainage_units_path = cloud_storage.joinpath( | ||
authority_name, | ||
"verwerkt", | ||
"1_ontvangen_data", | ||
"Na_levering_202404", | ||
"afwateringseenheden_WAM", | ||
"Afwateringseenheden.shp", | ||
) | ||
drainage_units_gdf = gpd.read_file(drainage_units_path, fid_as_index=True) | ||
|
||
# Load alternative drainage data | ||
drainage_units_path = cloud_storage.joinpath( | ||
authority_name, "aangeleverd", "Eerste_levering", "AfvoergebiedAanvoergebied.shp" | ||
) | ||
drainage_units_johnny_gdf = gpd.read_file(drainage_units_path, fid_as_index=True) | ||
|
||
# Load Ribasim model basin areas | ||
ribasim_areas_path = cloud_storage.joinpath(authority_name, "verwerkt", "4_ribasim", "areas.gpkg") | ||
ribasim_areas_gdf = gpd.read_file(ribasim_areas_path, fid_as_index=True, layer="areas") | ||
|
||
# Load node edit data | ||
basin_node_edits_path = cloud_storage.joinpath(authority_name, "verwerkt", "model_edits.gpkg") | ||
basin_node_edits_gdf = gpd.read_file(basin_node_edits_path, fid_as_index=True, layer="unassigned_basin_node") | ||
basin_area_edits_gdf = gpd.read_file(basin_node_edits_path, fid_as_index=True, layer="unassigned_basin_area") | ||
internal_basin_edits_gdf = gpd.read_file(basin_node_edits_path, fid_as_index=True, layer="internal_basins") | ||
|
||
|
||
# replace unassigned basin area with baisn_area_edits | ||
# 770 - 43 = 727 | ||
model.basin.area.df = model.basin.area.df[~model.basin.area.df.index.isin(model.unassigned_basin_area.index)] | ||
# 727 + 28 = 755 | ||
df = basin_area_edits_gdf[basin_area_edits_gdf["to_node_id"].notna()] | ||
df.loc[:, ["node_id"]] = df["to_node_id"].astype("int32") | ||
model.basin.area.df = pd.concat([model.basin.area.df, df[["node_id", "geometry"]]]) | ||
|
||
# %% Assign Ribasim model ID's (dissolved areas) to the model basin areas (original areas with code) by overlapping the Ribasim area file baed on largest overlap | ||
# then assign Ribasim node-ID's to areas with the same area code. Many nodata areas disappear by this method | ||
combined_basin_areas_gdf = gpd.overlay(ribasim_areas_gdf, model.basin.area.df, how="union").explode() | ||
combined_basin_areas_gdf["geometry"] = combined_basin_areas_gdf["geometry"].apply(lambda x: x if x.has_z else x) | ||
combined_basin_areas_gdf["area"] = combined_basin_areas_gdf.geometry.area | ||
non_null_basin_areas_gdf = combined_basin_areas_gdf[combined_basin_areas_gdf["node_id"].notna()] | ||
|
||
largest_area_node_ids = non_null_basin_areas_gdf.loc[ | ||
non_null_basin_areas_gdf.groupby("code")["area"].idxmax(), ["code", "node_id"] | ||
].reset_index(drop=True) | ||
|
||
combined_basin_areas_gdf = combined_basin_areas_gdf.merge(largest_area_node_ids, on="code", how="left") | ||
combined_basin_areas_gdf["node_id"] = combined_basin_areas_gdf["node_id_y"] | ||
combined_basin_areas_gdf.drop(columns=["node_id_x", "node_id_y"], inplace=True) | ||
combined_basin_areas_gdf = combined_basin_areas_gdf.drop_duplicates(keep="first") | ||
combined_basin_areas_gdf = combined_basin_areas_gdf.dissolve(by="code").reset_index() | ||
|
||
# %% The Ribasim model basins that have still nodata are being checked if they have overlap with aftwareringseenheden.shp. | ||
# If overlap, they get ther Ribasim node-id where they have the largest overlap with | ||
filtered_drainage_units_gdf = drainage_units_johnny_gdf[drainage_units_johnny_gdf["SOORTAFVOE"] != "Deelstroomgebied"] | ||
filtered_drainage_units_gdf["geometry"] = filtered_drainage_units_gdf["geometry"].apply(lambda x: x if x.has_z else x) | ||
filtered_drainage_units_gdf = filtered_drainage_units_gdf.to_crs(combined_basin_areas_gdf.crs) | ||
|
||
# Overlay filtered drainage units and updated basin areas | ||
combined_basin_areas_johnny_gdf = gpd.overlay( | ||
filtered_drainage_units_gdf, combined_basin_areas_gdf, how="union" | ||
).explode() | ||
combined_basin_areas_johnny_gdf = combined_basin_areas_johnny_gdf.dissolve(by="CODE") | ||
|
||
# Step 1: Separate unassigned from assigned units | ||
unassigned_units_gdf = combined_basin_areas_gdf[combined_basin_areas_gdf["node_id"].isnull()] | ||
unassigned_units_gdf["geometry"] = unassigned_units_gdf["geometry"].apply(lambda x: x if x.has_z else x) | ||
assigned_units_gdf = combined_basin_areas_gdf[combined_basin_areas_gdf["node_id"].notna()] | ||
assigned_units_gdf["geometry"] = assigned_units_gdf["geometry"].apply(lambda x: x if x.has_z else x) | ||
|
||
# Step 2: Calculate intersection areas between unassigned units and Johnny basins | ||
overlap_gdf = gpd.overlay(combined_basin_areas_johnny_gdf, unassigned_units_gdf, how="union") | ||
|
||
# Step 3: Add overlap area for each polygon | ||
overlap_gdf["overlap_area"] = overlap_gdf.geometry.area | ||
|
||
# Step 4: Select the largest overlap per code to assign `node_id` | ||
largest_area_node_ids = overlap_gdf.loc[ | ||
overlap_gdf.groupby("OBJECTID_2")["overlap_area"].idxmax(), ["node_id_1", "OBJECTID_2"] | ||
].reset_index(drop=True) | ||
|
||
# Step 5: Merge largest node_id from overlaps back to unassigned units | ||
unassigned_units_gdf = unassigned_units_gdf.merge( | ||
largest_area_node_ids, left_on=["OBJECTID"], right_on=["OBJECTID_2"], how="outer" | ||
) | ||
unassigned_units_gdf["node_id"] = unassigned_units_gdf["node_id_1"] | ||
unassigned_units_gdf.drop(columns=["node_id_1"], inplace=True) | ||
|
||
# Step 6: Merge unassigned node_ids back into the main dataset | ||
basin_area_update = combined_basin_areas_gdf.merge( | ||
unassigned_units_gdf[["OBJECTID", "node_id"]], | ||
on="OBJECTID", | ||
how="left", | ||
suffixes=("", "_unassigned"), | ||
) | ||
# Step 7: Finalize missing `node_id` values from unassigned units | ||
basin_area_update.loc[:, ["node_id"]] = basin_area_update["node_id"].fillna(basin_area_update["node_id_unassigned"]) | ||
basin_area_update.drop(columns=["node_id_unassigned"], inplace=True) | ||
|
||
# %% If there are still nodata basins they are removed by assigning Nearest Basin ID | ||
null_node_rows = basin_area_update[basin_area_update["node_id"].isnull()] | ||
|
||
if not null_node_rows.empty: | ||
null_node_rows = null_node_rows.set_geometry(null_node_rows.geometry.centroid) | ||
basin_area_update_centroid = basin_area_update.set_geometry(basin_area_update.geometry.centroid) | ||
|
||
nearest_basin = gpd.sjoin_nearest( | ||
null_node_rows, | ||
basin_area_update_centroid[basin_area_update_centroid["node_id"].notna()][["geometry", "node_id"]], | ||
how="left", | ||
distance_col="distance", | ||
) | ||
basin_area_update.loc[basin_area_update["node_id"].isnull(), "node_id"] = nearest_basin["node_id_right"] | ||
# basin_area_update.to_file("basin_area_update.gpkg", layer="basin_area_update") | ||
# %% Based on basin_node_edits.gpkg, areas are assigned the Ribasim node_id that is in the file | ||
basin_node_edits_notnull_gdf = basin_node_edits_gdf[basin_node_edits_gdf["to_area_code"].notna()] | ||
merged_gdf = basin_area_update.merge( | ||
basin_node_edits_notnull_gdf[["to_area_code", "node_id"]], | ||
how="left", | ||
left_on="code", | ||
right_on="to_area_code", | ||
) | ||
merged_gdf["node_id"] = merged_gdf["node_id_y"].combine_first(merged_gdf["node_id_x"]) | ||
merged_gdf.drop(columns=["node_id_x", "node_id_y"], inplace=True) | ||
|
||
# Dissolve geometries by `node_id` and save final GeoDataFrame | ||
final_basins_gdf = merged_gdf.set_index("node_id").dissolve(by="node_id").reset_index() | ||
# final_basins_gdf.to_file("basins_noholes.gpkg", layer="basins_noholes") | ||
|
||
final_basins_gdf.index.name = "fid" | ||
model.basin.area.df = final_basins_gdf[["node_id", "geometry"]] | ||
|
||
# %% Check Differences in Node_ID Between Initial and Final Models | ||
final_node_ids = final_basins_gdf["node_id"] | ||
model_node_ids = model.basin.area.df["node_id"] | ||
missing_in_model = final_basins_gdf[~final_basins_gdf["node_id"].isin(model_node_ids)] | ||
missing_in_final = model.basin.area.df[~model.basin.area.df["node_id"].isin(final_node_ids)] | ||
missing_gdf = pd.concat([missing_in_model, missing_in_final]) | ||
|
||
if "fid" in missing_gdf.columns: | ||
missing_gdf = missing_gdf.rename(columns={"fid": "new_fid_name"}) | ||
|
||
# %% merge_basins | ||
for row in basin_node_edits_gdf[basin_node_edits_gdf["to_node_id"].notna()].itertuples(): | ||
if pd.isna(row.connected): | ||
are_connected = True | ||
else: | ||
are_connected = row.connected | ||
model.merge_basins(basin_id=row.node_id, to_basin_id=row.to_node_id, are_connected=are_connected) | ||
|
||
mask = internal_basin_edits_gdf["to_node_id"].notna() & internal_basin_edits_gdf["add_object"].isna() | ||
for row in internal_basin_edits_gdf[mask].itertuples(): | ||
if pd.isna(row.connected): | ||
are_connected = True | ||
else: | ||
are_connected = row.connected | ||
model.merge_basins(basin_id=row.node_id, to_basin_id=row.to_node_id, are_connected=are_connected) | ||
|
||
# %% add and connect nodes | ||
for row in internal_basin_edits_gdf[internal_basin_edits_gdf.add_object.notna()].itertuples(): | ||
from_basin_id = row.node_id | ||
to_basin_id = row.to_node_id | ||
if row.add_object == "stuw": | ||
node_type = "TabulatedRatingCurve" | ||
model.add_and_connect_node( | ||
from_basin_id, int(to_basin_id), geometry=row.geometry, node_type=node_type, name=row.add_object_name | ||
) | ||
|
||
# %% reverse direction at node | ||
for row in internal_basin_edits_gdf[internal_basin_edits_gdf["reverse_direction"]].itertuples(): | ||
model.reverse_direction_at_node(node_id=row.node_id) | ||
|
||
# %% change node_type | ||
for row in basin_node_edits_gdf[basin_node_edits_gdf["change_to_node_type"].notna()].itertuples(): | ||
if row.change_to_node_type: | ||
model.update_node(row.node_id, row.change_to_node_type, data=[level_boundary.Static(level=[0])]) | ||
|
||
|
||
# %% corrigeren knoop-topologie | ||
outlet_data = outlet.Static(flow_rate=[100]) | ||
# ManningResistance bovenstrooms LevelBoundary naar Outlet | ||
for row in network_validator.edge_incorrect_type_connectivity().itertuples(): | ||
model.update_node(row.from_node_id, "Outlet", data=[outlet_data]) | ||
|
||
# Inlaten van ManningResistance naar Outlet | ||
for row in network_validator.edge_incorrect_type_connectivity( | ||
from_node_type="LevelBoundary", to_node_type="ManningResistance" | ||
).itertuples(): | ||
model.update_node(row.to_node_id, "Outlet", data=[outlet_data]) | ||
|
||
|
||
# %% | ||
# basin-profielen/state updaten | ||
df = pd.DataFrame( | ||
{ | ||
"node_id": np.repeat(model.basin.node.df.index.to_numpy(), 2), | ||
"level": [0.0, 1.0] * len(model.basin.node.df), | ||
"area": [0.01, 1000.0] * len(model.basin.node.df), | ||
} | ||
) | ||
df.index.name = "fid" | ||
model.basin.profile.df = df | ||
|
||
df = model.basin.profile.df.groupby("node_id")[["level"]].max().reset_index() | ||
df.index.name = "fid" | ||
model.basin.state.df = df | ||
|
||
|
||
# tabulated_rating_curves updaten | ||
df = pd.DataFrame( | ||
{ | ||
"node_id": np.repeat(model.tabulated_rating_curve.node.df.index.to_numpy(), 2), | ||
"level": [0.0, 5] * len(model.tabulated_rating_curve.node.df), | ||
"flow_rate": [0, 0.1] * len(model.tabulated_rating_curve.node.df), | ||
} | ||
) | ||
df.index.name = "fid" | ||
model.tabulated_rating_curve.static.df = df | ||
|
||
|
||
model.write(ribasim_model_dir.with_stem("AaenMaas_fix_model_area") / "aam.toml") | ||
model.report_basin_area() | ||
model.report_internal_basins() | ||
# %% |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
# %% | ||
from ribasim_nl import CloudStorage | ||
|
||
cloud = CloudStorage() | ||
|
||
authority = "AmstelGooienVecht" | ||
short_name = "agv" | ||
|
||
cloud = CloudStorage() | ||
|
||
model_url = cloud.joinurl(authority, "modellen", f"{authority}_parametrized_2024_11_20") | ||
ribasim_toml = cloud.joinpath(authority, "modellen", f"{authority}_parametrized_2024_11_20", "ribasim.toml") | ||
if not ribasim_toml.exists(): | ||
cloud.download_content(model_url) | ||
|
||
if ribasim_toml.exists(): # get a short_name version to differentiate QGIS layergroup | ||
ribasim_toml.with_name(f"{short_name}.toml").write_text(ribasim_toml.read_text()) | ||
|
||
# %% |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
# %% | ||
import geopandas as gpd | ||
from shapely.geometry import MultiPolygon, Polygon | ||
|
||
from ribasim_nl import CloudStorage, Model | ||
|
||
cloud = CloudStorage() | ||
|
||
authority = "BrabantseDelta" | ||
short_name = "wbd" | ||
|
||
ribasim_toml = cloud.joinpath(authority, "modellen", f"{authority}_fix_model_network", f"{short_name}.toml") | ||
model = Model.read(ribasim_toml) | ||
|
||
afwateringseenheden_df = gpd.read_file( | ||
cloud.joinpath(authority, "verwerkt", "4_ribasim", "hydamo.gpkg"), layer="afwateringseenheden" | ||
) | ||
afwateringseenheden_poly = afwateringseenheden_df.buffer(0.01).buffer(-0.01).union_all() | ||
waterschap_poly = MultiPolygon([Polygon(i.exterior) for i in afwateringseenheden_poly.geoms]) | ||
|
||
basin_polygon = model.basin.area.df.union_all() | ||
holes_poly = waterschap_poly.difference(basin_polygon) | ||
holes_df = gpd.GeoSeries(holes_poly.geoms, crs=model.basin.area.df.crs) | ||
holes_df.to_file(cloud.joinpath(authority, "verwerkt", "basin_gaten.gpkg")) |
Oops, something went wrong.