Skip to content

Commit

Permalink
Equal ratio allocation objective take 2 (#1386)
Browse files Browse the repository at this point in the history
Merge `equal_allocation_objective` again after
#1385, after fixing
#1383.

---------

Co-authored-by: Martijn Visser <[email protected]>
  • Loading branch information
SouthEndMusic and visr authored May 23, 2024
1 parent 188f541 commit 1386ced
Show file tree
Hide file tree
Showing 7 changed files with 219 additions and 288 deletions.
2 changes: 1 addition & 1 deletion Manifest.toml
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

julia_version = "1.10.3"
manifest_format = "2.0"
project_hash = "bd4c7b1f5d210b9878847b2e4ee3ae8220c5f1c7"
project_hash = "045162196d64ccb59bdab2af0422fde0b0e83c77"

[[deps.ADTypes]]
git-tree-sha1 = "daf26bbdec60d9ca1c0003b70f389d821ddb4224"
Expand Down
169 changes: 9 additions & 160 deletions core/src/allocation_init.jl
Original file line number Diff line number Diff line change
Expand Up @@ -192,55 +192,6 @@ function add_variables_flow_buffer!(
return nothing
end

"""
Certain allocation distribution types use absolute values in the objective function.
Since most optimization packages do not support the absolute value function directly,
New variables are introduced that act as the absolute value of an expression by
posing the appropriate constraints.
"""
function add_variables_absolute_value!(
problem::JuMP.Model,
p::Parameters,
subnetwork_id::Int32,
)::Nothing
(; graph, allocation) = p
(; main_network_connections) = allocation

node_ids = graph[].node_ids[subnetwork_id]
node_ids_user_demand = NodeID[]
node_ids_level_demand = NodeID[]
node_ids_flow_demand = NodeID[]

for node_id in node_ids
type = node_id.type
if type == NodeType.UserDemand
push!(node_ids_user_demand, node_id)
elseif has_external_demand(graph, node_id, :level_demand)[1]
push!(node_ids_level_demand, node_id)
elseif has_external_demand(graph, node_id, :flow_demand)[1]
push!(node_ids_flow_demand, node_id)
end
end

# For the main network, connections to subnetworks are treated as UserDemands
if is_main_network(subnetwork_id)
for connections_subnetwork in main_network_connections
for connection in connections_subnetwork
push!(node_ids_user_demand, connection[2])
end
end
end

problem[:F_abs_user_demand] =
JuMP.@variable(problem, F_abs_user_demand[node_id = node_ids_user_demand])
problem[:F_abs_level_demand] =
JuMP.@variable(problem, F_abs_level_demand[node_id = node_ids_level_demand])
problem[:F_abs_flow_demand] =
JuMP.@variable(problem, F_abs_flow_demand[node_id = node_ids_flow_demand])

return nothing
end

"""
Add the flow capacity constraints to the allocation problem.
Only finite capacities get a constraint.
Expand Down Expand Up @@ -417,111 +368,6 @@ function add_constraints_conservation_node!(
return nothing
end

"""
Minimizing |expr| can be achieved by introducing a new variable expr_abs
and posing the following constraints:
expr_abs >= expr
expr_abs >= -expr
"""
function add_constraints_absolute_value!(
problem::JuMP.Model,
flow_per_node::Dict{NodeID, JuMP.VariableRef},
F_abs::JuMP.Containers.DenseAxisArray,
variable_type::String,
)::Nothing
# Example demand
d = 2.0

node_ids = only(F_abs.axes)

# These constraints together make sure that F_abs_* acts as the absolute
# value F_abs_* = |x| where x = F-d (here for example d = 2)
base_name = "abs_positive_$variable_type"
problem[Symbol(base_name)] = JuMP.@constraint(
problem,
[node_id = node_ids],
F_abs[node_id] >= (flow_per_node[node_id] - d),
base_name = base_name
)
base_name = "abs_negative_$variable_type"
problem[Symbol(base_name)] = JuMP.@constraint(
problem,
[node_id = node_ids],
F_abs[node_id] >= -(flow_per_node[node_id] - d),
base_name = base_name
)

return nothing
end

"""
Add constraints so that variables F_abs_user_demand act as the
absolute value of the expression comparing flow to a UserDemand to its demand.
"""
function add_constraints_absolute_value_user_demand!(
problem::JuMP.Model,
p::Parameters,
)::Nothing
(; graph) = p

F = problem[:F]
F_abs_user_demand = problem[:F_abs_user_demand]

# Get a dictionary UserDemand node ID => UserDemand inflow variable
flow_per_node = Dict(
node_id => F[(inflow_id(graph, node_id), node_id)] for
node_id in only(F_abs_user_demand.axes)
)

add_constraints_absolute_value!(
problem,
flow_per_node,
F_abs_user_demand,
"user_demand",
)

return nothing
end

"""
Add constraints so that variables F_abs_level_demand act as the
absolute value of the expression comparing flow to a basin to its demand.
"""
function add_constraints_absolute_value_level_demand!(problem::JuMP.Model)::Nothing
F_basin_in = problem[:F_basin_in]
F_abs_level_demand = problem[:F_abs_level_demand]

# Get a dictionary Basin node ID => Basin inflow variable
flow_per_node =
Dict(node_id => F_basin_in[node_id] for node_id in only(F_abs_level_demand.axes))

add_constraints_absolute_value!(problem, flow_per_node, F_abs_level_demand, "basin")

return nothing
end

"""
Add constraints so that variables F_abs_flow_demand act as the
absolute value of the expression comparing flow to a flow buffer to the flow demand.
"""
function add_constraints_absolute_value_flow_demand!(problem::JuMP.Model)::Nothing
F_flow_buffer_in = problem[:F_flow_buffer_in]
F_abs_flow_demand = problem[:F_abs_flow_demand]

# Get a dictionary Node ID => flow demand flow buffer variable
flow_per_node = Dict(
node_id => F_flow_buffer_in[node_id] for node_id in only(F_abs_flow_demand.axes)
)

add_constraints_absolute_value!(
problem,
flow_per_node,
F_abs_flow_demand,
"flow_demand",
)
return nothing
end

"""
Add the fractional flow constraints to the allocation problem.
The constraint indices are allocation edges over a fractional flow node.
Expand Down Expand Up @@ -644,22 +490,25 @@ function allocation_problem(
capacity::JuMP.Containers.SparseAxisArray{Float64, 2, Tuple{NodeID, NodeID}},
subnetwork_id::Int32,
)::JuMP.Model
optimizer = JuMP.optimizer_with_attributes(HiGHS.Optimizer, "log_to_console" => false)
optimizer = JuMP.optimizer_with_attributes(
HiGHS.Optimizer,
"log_to_console" => false,
"objective_bound" => 0.0,
"time_limit" => 60.0,
"random_seed" => 0,
"primal_feasibility_tolerance" => 1e-5,
"dual_feasibility_tolerance" => 1e-5,
)
problem = JuMP.direct_model(optimizer)

# Add variables to problem
add_variables_flow!(problem, capacity)
add_variables_basin!(problem, p, subnetwork_id)
add_variables_absolute_value!(problem, p, subnetwork_id)
add_variables_flow_buffer!(problem, p, subnetwork_id)

# Add constraints to problem
add_constraints_conservation_node!(problem, p, subnetwork_id)

add_constraints_absolute_value_user_demand!(problem, p)
add_constraints_absolute_value_flow_demand!(problem)
add_constraints_absolute_value_level_demand!(problem)

add_constraints_capacity!(problem, capacity, p, subnetwork_id)
add_constraints_source!(problem, p, subnetwork_id)
add_constraints_user_source!(problem, p, subnetwork_id)
Expand Down
104 changes: 26 additions & 78 deletions core/src/allocation_optim.jl
Original file line number Diff line number Diff line change
@@ -1,73 +1,31 @@
@enumx OptimizationType internal_sources collect_demands allocate

"""
Add a term to the objective function given by the objective type,
depending in the provided flow variable and the associated demand.
Add an objective term `demand * (1 - flow/demand)^2`. If the absolute
value of the demand is very small, this would lead to huge coefficients,
so in that case a term of the form (flow - demand)^2 is used.
"""
function add_objective_term!(
ex::JuMP.QuadExpr,
demand::Float64,
constraint_abs_positive::Union{JuMP.ConstraintRef, Nothing} = nothing,
constraint_abs_negative::Union{JuMP.ConstraintRef, Nothing} = nothing,
F::JuMP.VariableRef,
)::Nothing
# Objective function ∑ |F - d|
JuMP.set_normalized_rhs(constraint_abs_positive, -demand)
JuMP.set_normalized_rhs(constraint_abs_negative, demand)
return nothing
end

"""
Add a term to the expression of the objective function corresponding to
the demand of a UserDemand.
"""
function add_user_demand_term!(
edge::Tuple{NodeID, NodeID},
demand::Float64,
problem::JuMP.Model,
)::Nothing
node_id_user_demand = edge[2]

constraint_abs_positive = problem[:abs_positive_user_demand][node_id_user_demand]
constraint_abs_negative = problem[:abs_negative_user_demand][node_id_user_demand]

add_objective_term!(demand, constraint_abs_positive, constraint_abs_negative)
end

"""
Add a term to the expression of the objective function corresponding to
the demand of a node with a a flow demand.
"""
function add_flow_demand_term!(
edge::Tuple{NodeID, NodeID},
demand::Float64,
problem::JuMP.Model,
)::Nothing
node_id_flow_demand = edge[2]

constraint_abs_positive = problem[:abs_positive_flow_demand][node_id_flow_demand]
constraint_abs_negative = problem[:abs_negative_flow_demand][node_id_flow_demand]

add_objective_term!(demand, constraint_abs_positive, constraint_abs_negative)
end

"""
Add a term to the expression of the objective function corresponding to
the demand of a basin.
"""
function add_basin_term!(problem::JuMP.Model, demand::Float64, node_id::NodeID)::Nothing
constraint_abs_positive = get(problem[:abs_positive_basin], node_id)
constraint_abs_negative = get(problem[:abs_negative_basin], node_id)

if isnothing(constraint_abs_positive)
return
if abs(demand) < 1e-5
# Error term (F - d)^2 = F² - 2dF + d²
JuMP.add_to_expression!(ex, 1.0, F, F)
JuMP.add_to_expression!(ex, -2.0 * demand, F)
JuMP.add_to_expression!(ex, demand^2)
else
# Error term d*(1 - F/d)^2 = F²/d - 2F + d
JuMP.add_to_expression!(ex, 1.0 / demand, F, F)
JuMP.add_to_expression!(ex, -2.0, F)
JuMP.add_to_expression!(ex, demand)
end

add_objective_term!(demand, constraint_abs_positive, constraint_abs_negative)
return nothing
end

"""
Set the objective for the given priority.
For an objective with absolute values this also involves adjusting constraints.
"""
function set_objective_priority!(
allocation_model::AllocationModel,
Expand All @@ -80,30 +38,17 @@ function set_objective_priority!(
(; graph, user_demand, flow_demand, allocation, basin) = p
(; node_id, demand_reduced) = user_demand
(; main_network_connections, subnetwork_demands) = allocation
F = problem[:F]

ex = JuMP.AffExpr()

F_abs_user_demand = problem[:F_abs_user_demand]
F_abs_level_demand = problem[:F_abs_level_demand]
F_abs_flow_demand = problem[:F_abs_flow_demand]

# Add the absolute value terms to the objective function
if !isempty(only(F_abs_user_demand.axes))
ex += sum(F_abs_user_demand)
end
if !isempty(only(F_abs_level_demand.axes))
ex += sum(F_abs_level_demand)
end
if !isempty(only(F_abs_flow_demand.axes))
ex += sum(F_abs_flow_demand)
end
ex = JuMP.QuadExpr()

# Terms for subnetworks as UserDemand
if is_main_network(subnetwork_id)
for connections_subnetwork in main_network_connections
for connections_subnetwork in main_network_connections[2:end]
for connection in connections_subnetwork
d = subnetwork_demands[connection][priority_idx]
add_user_demand_term!(connection, d, problem)
F_inlet = F[connection]
add_objective_term!(ex, d, F_inlet)
end
end
end
Expand All @@ -116,7 +61,8 @@ function set_objective_priority!(
# UserDemand
user_demand_idx = findsorted(node_id, to_node_id)
d = demand_reduced[user_demand_idx, priority_idx]
add_user_demand_term!(edge, d, problem)
F_ud = F[edge]
add_objective_term!(ex, d, F_ud)
else
has_demand, demand_node_id =
has_external_demand(graph, to_node_id, :flow_demand)
Expand All @@ -128,7 +74,8 @@ function set_objective_priority!(
flow_demand.demand[findsorted(flow_demand.node_id, demand_node_id)] :
0.0

add_flow_demand_term!(edge, d, problem)
F_fd = F[edge]
add_objective_term!(ex, d, F_fd)
end
end
end
Expand All @@ -142,7 +89,8 @@ function set_objective_priority!(
get_basin_demand(allocation_model, u, p, t, node_id) : 0.0
_, basin_idx = id_index(basin.node_id, node_id)
basin.demand[basin_idx] = d
add_basin_term!(problem, d, node_id)
F_ld = F_basin_in[node_id]
add_objective_term!(ex, d, F_ld)
end

new_objective = JuMP.@expression(problem, ex)
Expand Down
Loading

0 comments on commit 1386ced

Please sign in to comment.