Skip to content

Commit

Permalink
build based on 4f8b156
Browse files Browse the repository at this point in the history
  • Loading branch information
Documenter.jl committed Jul 17, 2024
1 parent c569be9 commit b18c218
Show file tree
Hide file tree
Showing 32 changed files with 120 additions and 61 deletions.
2 changes: 1 addition & 1 deletion dev/changelog/index.html

Large diffs are not rendered by default.

Binary file added dev/images/paddy_profile.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
2 changes: 1 addition & 1 deletion dev/index.html

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion dev/intro/publications/index.html

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion dev/intro/use_cases/index.html

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion dev/model_docs/intro/index.html

Large diffs are not rendered by default.

4 changes: 2 additions & 2 deletions dev/model_docs/lateral/gwf/index.html

Large diffs are not rendered by default.

6 changes: 3 additions & 3 deletions dev/model_docs/lateral/kinwave/index.html

Large diffs are not rendered by default.

4 changes: 2 additions & 2 deletions dev/model_docs/lateral/local-inertial/index.html

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion dev/model_docs/lateral/sediment_flux/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -32,4 +32,4 @@
# Lake
lakearea = "LakeArea"
lakeareas = "wflow_lakeareas"
lakelocs = &quot;wflow_lakelocs&quot;</code></pre><p>Note that in the inland part, lake and reservoir coverage are used to filter erosion and transport in overland flow.</p><h2 id="References"><a class="docs-heading-anchor" href="#References">References</a><a id="References-1"></a><a class="docs-heading-anchor-permalink" href="#References" title="Permalink"></a></h2><ul><li>K.C. Abbaspour, J. Yang, I. Maximov, R. Siber, K. Bogner, J. Mieleitner, J. Zobrist, and R.Srinivasan. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333(2-4):413-430, 2007. 10.1016/j.jhydrol.2006.09.014</li><li>P. Borrelli, M. Märker, P. Panagos, and B. Schütt. Modeling soil erosion and river sediment yield for an intermountain drainage basin of the Central Apennines, Italy. Catena, 114:45-58, 2014. 10.1016/j.catena.2013.10.007</li><li>F. Engelund and E. Hansen. A monograph on sediment transport in alluvial streams. Technical University of Denmark 0stervoldgade 10, Copenhagen K., 1967.</li><li>G. Govers. Empirical relationships for the transport capacity of overland flow. IAHS Publication, (January 1990):45-63 ST, 1990.</li><li>G.J Hanson and A Simon. Erodibility of cohesive streambeds in the loess area of the midwestern USA. Hydrological Processes, 15(May 1999):23-38, 2001.</li><li>R Hessel and V Jetten. Suitability of transport equations in modelling soil erosion for a small Loess Plateau catchment. Engineering Geology, 91(1):56-71, 2007. 10.1016/j.enggeo.2006.12.013</li><li>J.P Julian, and R. Torres. Hydraulic erosion of cohesive riverbanks. Geomorphology, 76:193-206, 2006. 10.1016/j.geomorph.2005.11.003</li><li>D.W. Knight, J.D. Demetriou, and M.E. Hamed. Boundary Shear in Smooth Rectangular Channels. J. Hydraul. Eng., 110(4):405-422, 1984. 10.1061/(ASCE)0733-9429(1987)113:1(120)</li><li>S.L Neitsch, J.G Arnold, J.R Kiniry, and J.R Williams. SWAT Theoretical Documentation Version 2009. Texas Water Resources Institute, pages 1-647, 2011. 10.1016/j.scitotenv.2015.11.063</li><li>C. Oeurng, S. Sauvage, and J.M. Sanchez-Perez. Assessment of hydrology, sediment and particulate organic carbon yield in a large agricultural catchment using the SWAT model. Journal of Hydrology, 401:145-153, 2011. 10.1016/j.hydrol.2011.02.017</li><li>A. Simon, N. Pollen-Bankhead, and R.E Thomas. Development and application of a deterministic bank stability and toe erosion model for stream restoration. Geophysical Monograph Series, 194:453-474, 2011. 10.1029/2010GM001006</li><li>G. Verstraeten and J. Poesen. Estimating trap efficiency of small reservoirs and ponds: methods and implications for the assessment of sediment yield. Progress in Physical Geography, 24(2):219-251, 2000. 10.1177/030913330002400204</li><li>O. Vigiak, A. Malago, F. Bouraoui, M. Vanmaercke, and J. Poesen. Adapting SWAT hillslope erosion model to predict sediment concentrations and yields in large Basins. Science of the Total Environment, 538:855-875, 2015. 10.1016/j.scitotenv.2015.08.095</li><li>O. Vigiak, A. Malago, F. Bouraoui, M. Vanmaercke, F. Obreja, J. Poesen, H. Habersack, J. Feher, and S. Groselj. Modelling sediment fluxes in the Danube River Basin with SWAT. Science of the Total Environment, 2017. 10.1016/j.scitotenv.2017.04.236</li></ul></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../waterbodies/">« Reservoirs and Lakes</a><a class="docs-footer-nextpage" href="../../params_vertical/">Parameters vertical concepts »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 0.27.25 on <span class="colophon-date" title="Tuesday 11 June 2024 13:54">Tuesday 11 June 2024</span>. Using Julia version 1.10.3.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
lakelocs = &quot;wflow_lakelocs&quot;</code></pre><p>Note that in the inland part, lake and reservoir coverage are used to filter erosion and transport in overland flow.</p><h2 id="References"><a class="docs-heading-anchor" href="#References">References</a><a id="References-1"></a><a class="docs-heading-anchor-permalink" href="#References" title="Permalink"></a></h2><ul><li>K.C. Abbaspour, J. Yang, I. Maximov, R. Siber, K. Bogner, J. Mieleitner, J. Zobrist, and R.Srinivasan. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333(2-4):413-430, 2007. 10.1016/j.jhydrol.2006.09.014</li><li>P. Borrelli, M. Märker, P. Panagos, and B. Schütt. Modeling soil erosion and river sediment yield for an intermountain drainage basin of the Central Apennines, Italy. Catena, 114:45-58, 2014. 10.1016/j.catena.2013.10.007</li><li>F. Engelund and E. Hansen. A monograph on sediment transport in alluvial streams. Technical University of Denmark 0stervoldgade 10, Copenhagen K., 1967.</li><li>G. Govers. Empirical relationships for the transport capacity of overland flow. IAHS Publication, (January 1990):45-63 ST, 1990.</li><li>G.J Hanson and A Simon. Erodibility of cohesive streambeds in the loess area of the midwestern USA. Hydrological Processes, 15(May 1999):23-38, 2001.</li><li>R Hessel and V Jetten. Suitability of transport equations in modelling soil erosion for a small Loess Plateau catchment. Engineering Geology, 91(1):56-71, 2007. 10.1016/j.enggeo.2006.12.013</li><li>J.P Julian, and R. Torres. Hydraulic erosion of cohesive riverbanks. Geomorphology, 76:193-206, 2006. 10.1016/j.geomorph.2005.11.003</li><li>D.W. Knight, J.D. Demetriou, and M.E. Hamed. Boundary Shear in Smooth Rectangular Channels. J. Hydraul. Eng., 110(4):405-422, 1984. 10.1061/(ASCE)0733-9429(1987)113:1(120)</li><li>S.L Neitsch, J.G Arnold, J.R Kiniry, and J.R Williams. SWAT Theoretical Documentation Version 2009. Texas Water Resources Institute, pages 1-647, 2011. 10.1016/j.scitotenv.2015.11.063</li><li>C. Oeurng, S. Sauvage, and J.M. Sanchez-Perez. Assessment of hydrology, sediment and particulate organic carbon yield in a large agricultural catchment using the SWAT model. Journal of Hydrology, 401:145-153, 2011. 10.1016/j.hydrol.2011.02.017</li><li>A. Simon, N. Pollen-Bankhead, and R.E Thomas. Development and application of a deterministic bank stability and toe erosion model for stream restoration. Geophysical Monograph Series, 194:453-474, 2011. 10.1029/2010GM001006</li><li>G. Verstraeten and J. Poesen. Estimating trap efficiency of small reservoirs and ponds: methods and implications for the assessment of sediment yield. Progress in Physical Geography, 24(2):219-251, 2000. 10.1177/030913330002400204</li><li>O. Vigiak, A. Malago, F. Bouraoui, M. Vanmaercke, and J. Poesen. Adapting SWAT hillslope erosion model to predict sediment concentrations and yields in large Basins. Science of the Total Environment, 538:855-875, 2015. 10.1016/j.scitotenv.2015.08.095</li><li>O. Vigiak, A. Malago, F. Bouraoui, M. Vanmaercke, F. Obreja, J. Poesen, H. Habersack, J. Feher, and S. Groselj. Modelling sediment fluxes in the Danube River Basin with SWAT. Science of the Total Environment, 2017. 10.1016/j.scitotenv.2017.04.236</li></ul></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../waterbodies/">« Reservoirs and Lakes</a><a class="docs-footer-nextpage" href="../../params_vertical/">Parameters vertical concepts »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 0.27.25 on <span class="colophon-date" title="Wednesday 17 July 2024 07:28">Wednesday 17 July 2024</span>. Using Julia version 1.10.4.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
2 changes: 1 addition & 1 deletion dev/model_docs/lateral/waterbodies/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -36,4 +36,4 @@
394.02, 46.671, 46.671, 46.671, 46.671
394.03, 48.509, 48.509, 48.509, 48.509
394.04, 50.347, 50.347, 50.347, 50.347
394.05, 52.179, 52.179, 52.179, 52.179</code></pre><p>Linked lakes: In some cases, lakes can be linked and return flow can be allowed from the downstream to the upstream lake. The linked lakes are defined in the <code>linkedlakelocs</code> parameter that represent the downstream lake location ID, at the grid cell of the upstream lake location.</p><div class="admonition is-info"><header class="admonition-header">Note</header><div class="admonition-body"><p>In every file, level units are meters [m] above lake bottom and not meters above sea level [m asl]. Especially with storage/rating curves coming from data, please be careful and convert units if needed.</p></div></div><h2 id="References"><a class="docs-heading-anchor" href="#References">References</a><a id="References-1"></a><a class="docs-heading-anchor-permalink" href="#References" title="Permalink"></a></h2><ul><li>Bos M.G., 1989. Discharge measurement structures. Third revised edition, International Institute for Land Reclamation and Improvement ILRI, Wageningen, The Netherlands.</li><li>Burek P., Van der Knijf J.M., Ad de Roo, 2013. LISFLOOD – Distributed Water Balance and flood Simulation Model – Revised User Manual. DOI: http://dx.doi.org/10.2788/24719.</li></ul></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../local-inertial/">« Local inertial</a><a class="docs-footer-nextpage" href="../sediment_flux/">Sediment flux »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 0.27.25 on <span class="colophon-date" title="Tuesday 11 June 2024 13:54">Tuesday 11 June 2024</span>. Using Julia version 1.10.3.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
394.05, 52.179, 52.179, 52.179, 52.179</code></pre><p>Linked lakes: In some cases, lakes can be linked and return flow can be allowed from the downstream to the upstream lake. The linked lakes are defined in the <code>linkedlakelocs</code> parameter that represent the downstream lake location ID, at the grid cell of the upstream lake location.</p><div class="admonition is-info"><header class="admonition-header">Note</header><div class="admonition-body"><p>In every file, level units are meters [m] above lake bottom and not meters above sea level [m asl]. Especially with storage/rating curves coming from data, please be careful and convert units if needed.</p></div></div><h2 id="References"><a class="docs-heading-anchor" href="#References">References</a><a id="References-1"></a><a class="docs-heading-anchor-permalink" href="#References" title="Permalink"></a></h2><ul><li>Bos M.G., 1989. Discharge measurement structures. Third revised edition, International Institute for Land Reclamation and Improvement ILRI, Wageningen, The Netherlands.</li><li>Burek P., Van der Knijf J.M., Ad de Roo, 2013. LISFLOOD – Distributed Water Balance and flood Simulation Model – Revised User Manual. DOI: http://dx.doi.org/10.2788/24719.</li></ul></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../local-inertial/">« Local inertial</a><a class="docs-footer-nextpage" href="../sediment_flux/">Sediment flux »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 0.27.25 on <span class="colophon-date" title="Wednesday 17 July 2024 07:28">Wednesday 17 July 2024</span>. Using Julia version 1.10.4.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
Loading

0 comments on commit b18c218

Please sign in to comment.