Skip to content

Commit

Permalink
build based on 6dfd104
Browse files Browse the repository at this point in the history
  • Loading branch information
Documenter.jl committed Sep 17, 2024
1 parent 8456bbb commit c3eb00c
Show file tree
Hide file tree
Showing 28 changed files with 31 additions and 31 deletions.
2 changes: 1 addition & 1 deletion previews/PR463/changelog/index.html

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion previews/PR463/index.html

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion previews/PR463/intro/publications/index.html

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion previews/PR463/intro/use_cases/index.html

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion previews/PR463/model_docs/intro/index.html

Large diffs are not rendered by default.

4 changes: 2 additions & 2 deletions previews/PR463/model_docs/lateral/gwf/index.html

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion previews/PR463/model_docs/lateral/kinwave/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -24,4 +24,4 @@
pits = "wflow_pits"

[model]
pits = true</code></pre><h2 id="Limitations"><a class="docs-heading-anchor" href="#Limitations">Limitations</a><a id="Limitations-1"></a><a class="docs-heading-anchor-permalink" href="#Limitations" title="Permalink"></a></h2><p>The kinematic wave approach for channel, overland and lateral subsurface flow, assumes that the topography controls water flow mostly. This assumption holds for steep terrain, but in less steep terrain the hydraulic gradient is likely not equal to the surface slope (subsurface flow), or pressure differences and inertial momentum cannot be neglected (channel and overland flow). In addition, while the kinematic wave equations are solved with a nonlinear scheme using Newton&#39;s method (Chow, 1988), other model equations are solved through a simple explicit scheme. In summary the following limitations apply:</p><ul><li><p>Channel flow, and to a lesser degree overland flow, may be unrealistic in terrain that is not steep, and where pressure forces and inertial momentum are important.</p></li><li><p>The lateral movement of subsurface flow may be very wrong in terrain that is not steep.</p></li></ul><h2 id="External-inflows"><a class="docs-heading-anchor" href="#External-inflows">External inflows</a><a id="External-inflows-1"></a><a class="docs-heading-anchor-permalink" href="#External-inflows" title="Permalink"></a></h2><p>External inflows, for example water supply or abstractions, can be added to the kinematic wave via the <code>inflow</code> variable. For this, the user can supply a 2D map of the inflow, as a cyclic parameter or as part of forcing (see also <a href="../../../user_guide/step2_settings_file/#Input-section">Input section</a>). These inflows are added or abstracted from the upstream inflow <code>qin</code> before running the kinematic wave to solve the impact on resulting <code>q</code>. In case of a negative inflow (abstractions), a minimum of zero is applied to the upstream flow <code>qin</code>.</p><h2 id="References"><a class="docs-heading-anchor" href="#References">References</a><a id="References-1"></a><a class="docs-heading-anchor-permalink" href="#References" title="Permalink"></a></h2><ul><li>Chow, V., Maidment, D. and Mays, L., 1988, Applied Hydrology. McGraw-Hill Book Company, New York.</li></ul></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../gwf/">« Groundwater flow</a><a class="docs-footer-nextpage" href="../local-inertial/">Local inertial »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 0.27.25 on <span class="colophon-date" title="Tuesday 17 September 2024 05:51">Tuesday 17 September 2024</span>. Using Julia version 1.10.5.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
pits = true</code></pre><h2 id="Limitations"><a class="docs-heading-anchor" href="#Limitations">Limitations</a><a id="Limitations-1"></a><a class="docs-heading-anchor-permalink" href="#Limitations" title="Permalink"></a></h2><p>The kinematic wave approach for channel, overland and lateral subsurface flow, assumes that the topography controls water flow mostly. This assumption holds for steep terrain, but in less steep terrain the hydraulic gradient is likely not equal to the surface slope (subsurface flow), or pressure differences and inertial momentum cannot be neglected (channel and overland flow). In addition, while the kinematic wave equations are solved with a nonlinear scheme using Newton&#39;s method (Chow, 1988), other model equations are solved through a simple explicit scheme. In summary the following limitations apply:</p><ul><li><p>Channel flow, and to a lesser degree overland flow, may be unrealistic in terrain that is not steep, and where pressure forces and inertial momentum are important.</p></li><li><p>The lateral movement of subsurface flow may be very wrong in terrain that is not steep.</p></li></ul><h2 id="External-inflows"><a class="docs-heading-anchor" href="#External-inflows">External inflows</a><a id="External-inflows-1"></a><a class="docs-heading-anchor-permalink" href="#External-inflows" title="Permalink"></a></h2><p>External inflows, for example water supply or abstractions, can be added to the kinematic wave via the <code>inflow</code> variable. For this, the user can supply a 2D map of the inflow, as a cyclic parameter or as part of forcing (see also <a href="../../../user_guide/step2_settings_file/#Input-section">Input section</a>). These inflows are added or abstracted from the upstream inflow <code>qin</code> before running the kinematic wave to solve the impact on resulting <code>q</code>. In case of a negative inflow (abstractions), a minimum of zero is applied to the upstream flow <code>qin</code>.</p><h2 id="References"><a class="docs-heading-anchor" href="#References">References</a><a id="References-1"></a><a class="docs-heading-anchor-permalink" href="#References" title="Permalink"></a></h2><ul><li>Chow, V., Maidment, D. and Mays, L., 1988, Applied Hydrology. McGraw-Hill Book Company, New York.</li></ul></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../gwf/">« Groundwater flow</a><a class="docs-footer-nextpage" href="../local-inertial/">Local inertial »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 0.27.25 on <span class="colophon-date" title="Tuesday 17 September 2024 06:54">Tuesday 17 September 2024</span>. Using Julia version 1.10.5.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
Original file line number Diff line number Diff line change
Expand Up @@ -13,4 +13,4 @@
river_routing = &quot;local-inertial&quot; # default is kinematic-wave
inertial_flow_alpha = 0.5 # alpha coefficient for model stability (default = 0.7)
froude_limit = true # default is true, limit flow to subcritical-critical according to Froude number
h_thresh = 0.1 # water depth [m] threshold for calculating flow between cells (default = 1e-03)</code></pre><p>The properties <code>inertial_flow_alpha</code>, <code>froude_limit</code> and <code>h_thresh</code> apply to 1D river routing as well as 2D overland flow. The properties <code>inertial_flow_alpha</code> and <code>froude_limit</code>, and the adaptive model time step <span>$\Delta t$</span> are explained in more detail in the <a href="#River-and-floodplain-routing">River and floodplain routing</a> section of the local inertial model.</p><h2 id="Inflow"><a class="docs-heading-anchor" href="#Inflow">Inflow</a><a id="Inflow-1"></a><a class="docs-heading-anchor-permalink" href="#Inflow" title="Permalink"></a></h2><p>External water (supply/abstraction) <code>inflow</code> [m<span>$^3$</span> s<span>$^{-1}$</span>] can be added to the local inertial model for river flow (1D) and river and overland flow combined (1D-2D), as a cyclic parameter or as part of forcing (see also <a href="../../../user_guide/step2_settings_file/#Input-section">Input section</a>).</p><h2 id="Abstractions"><a class="docs-heading-anchor" href="#Abstractions">Abstractions</a><a id="Abstractions-1"></a><a class="docs-heading-anchor-permalink" href="#Abstractions" title="Permalink"></a></h2><p>Abstractions from the river through the variable <code>abstraction</code> [m<span>$^3$</span> s<span>${-1}$</span>] are possible when water demand and allocation is computed. The variable <code>abstraction</code> is set from the water demand and allocation module each time step. Abstractions are subtracted as part of the continuity equation of the local inertial model.</p><h2 id="Multi-Threading"><a class="docs-heading-anchor" href="#Multi-Threading">Multi-Threading</a><a id="Multi-Threading-1"></a><a class="docs-heading-anchor-permalink" href="#Multi-Threading" title="Permalink"></a></h2><p>The local inertial model for river flow (1D) and river and overland flow combined (1D-2D) can be executed in parallel using multiple threads.</p><h2 id="References"><a class="docs-heading-anchor" href="#References">References</a><a id="References-1"></a><a class="docs-heading-anchor-permalink" href="#References" title="Permalink"></a></h2><ul><li>Adams, J. M., Gasparini, N. M., Hobley, D. E. J., Tucker, G. E., Hutton, E. W. H., Nudurupati, S. S., and Istanbulluoglu, E., 2017, The Landlab v1.0 OverlandFlow component: a Python tool for computing shallow-water flow across watersheds, Geosci. Model Dev., 10, 1645–1663, <a href="https://doi.org/10.5194/gmd-10-1645-2017">https://doi.org/10.5194/gmd-10-1645-2017</a>.</li><li>de Almeida, G. A. M., P. Bates, J. E. Freer, and M. Souvignet, 2012, Improving the stability of a simple formulation of the shallow water equations for 2-D flood modeling, Water Resour. Res., 48, W05528, <a href="https://doi.org/10.1029/2011WR011570">https://doi.org/10.1029/2011WR011570</a>.</li><li>Bates, P. D., M. S. Horritt, and T. J. Fewtrell, 2010, A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling, J. Hydrol., 387, 33–45, <a href="https://doi.org/10.1016/j.jhydrol.2010.03.027">https://doi.org/10.1016/j.jhydrol.2010.03.027</a>.</li><li>Coulthard, T. J., Neal, J. C., Bates, P. D., Ramirez, J., de Almeida, G. A. M., and Hancock, G. R., 2013, Integrating the LISFLOOD-FP 2- D hydrodynamic model with the CAESAR model: implications for modelling landscape evolution, Earth Surf. Proc. Land., 38, 1897–1906, <a href="https://doi.org/10.1002/esp.3478">https://doi.org/10.1002/esp.3478</a>.</li><li>Neal, J., G. Schumann, and P. Bates (2012), A subgrid channel model for simulating river hydraulics and floodplaininundation over large and data sparse areas, Water Resour.Res., 48, W11506, <a href="https://doi.org/10.1029/2012WR012514">https://doi.org/10.1029/2012WR012514</a>.</li></ul></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../kinwave/">« Kinematic wave</a><a class="docs-footer-nextpage" href="../waterbodies/">Reservoirs and Lakes »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 0.27.25 on <span class="colophon-date" title="Tuesday 17 September 2024 05:51">Tuesday 17 September 2024</span>. Using Julia version 1.10.5.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
h_thresh = 0.1 # water depth [m] threshold for calculating flow between cells (default = 1e-03)</code></pre><p>The properties <code>inertial_flow_alpha</code>, <code>froude_limit</code> and <code>h_thresh</code> apply to 1D river routing as well as 2D overland flow. The properties <code>inertial_flow_alpha</code> and <code>froude_limit</code>, and the adaptive model time step <span>$\Delta t$</span> are explained in more detail in the <a href="#River-and-floodplain-routing">River and floodplain routing</a> section of the local inertial model.</p><h2 id="Inflow"><a class="docs-heading-anchor" href="#Inflow">Inflow</a><a id="Inflow-1"></a><a class="docs-heading-anchor-permalink" href="#Inflow" title="Permalink"></a></h2><p>External water (supply/abstraction) <code>inflow</code> [m<span>$^3$</span> s<span>$^{-1}$</span>] can be added to the local inertial model for river flow (1D) and river and overland flow combined (1D-2D), as a cyclic parameter or as part of forcing (see also <a href="../../../user_guide/step2_settings_file/#Input-section">Input section</a>).</p><h2 id="Abstractions"><a class="docs-heading-anchor" href="#Abstractions">Abstractions</a><a id="Abstractions-1"></a><a class="docs-heading-anchor-permalink" href="#Abstractions" title="Permalink"></a></h2><p>Abstractions from the river through the variable <code>abstraction</code> [m<span>$^3$</span> s<span>${-1}$</span>] are possible when water demand and allocation is computed. The variable <code>abstraction</code> is set from the water demand and allocation module each time step. Abstractions are subtracted as part of the continuity equation of the local inertial model.</p><h2 id="Multi-Threading"><a class="docs-heading-anchor" href="#Multi-Threading">Multi-Threading</a><a id="Multi-Threading-1"></a><a class="docs-heading-anchor-permalink" href="#Multi-Threading" title="Permalink"></a></h2><p>The local inertial model for river flow (1D) and river and overland flow combined (1D-2D) can be executed in parallel using multiple threads.</p><h2 id="References"><a class="docs-heading-anchor" href="#References">References</a><a id="References-1"></a><a class="docs-heading-anchor-permalink" href="#References" title="Permalink"></a></h2><ul><li>Adams, J. M., Gasparini, N. M., Hobley, D. E. J., Tucker, G. E., Hutton, E. W. H., Nudurupati, S. S., and Istanbulluoglu, E., 2017, The Landlab v1.0 OverlandFlow component: a Python tool for computing shallow-water flow across watersheds, Geosci. Model Dev., 10, 1645–1663, <a href="https://doi.org/10.5194/gmd-10-1645-2017">https://doi.org/10.5194/gmd-10-1645-2017</a>.</li><li>de Almeida, G. A. M., P. Bates, J. E. Freer, and M. Souvignet, 2012, Improving the stability of a simple formulation of the shallow water equations for 2-D flood modeling, Water Resour. Res., 48, W05528, <a href="https://doi.org/10.1029/2011WR011570">https://doi.org/10.1029/2011WR011570</a>.</li><li>Bates, P. D., M. S. Horritt, and T. J. Fewtrell, 2010, A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling, J. Hydrol., 387, 33–45, <a href="https://doi.org/10.1016/j.jhydrol.2010.03.027">https://doi.org/10.1016/j.jhydrol.2010.03.027</a>.</li><li>Coulthard, T. J., Neal, J. C., Bates, P. D., Ramirez, J., de Almeida, G. A. M., and Hancock, G. R., 2013, Integrating the LISFLOOD-FP 2- D hydrodynamic model with the CAESAR model: implications for modelling landscape evolution, Earth Surf. Proc. Land., 38, 1897–1906, <a href="https://doi.org/10.1002/esp.3478">https://doi.org/10.1002/esp.3478</a>.</li><li>Neal, J., G. Schumann, and P. Bates (2012), A subgrid channel model for simulating river hydraulics and floodplaininundation over large and data sparse areas, Water Resour.Res., 48, W11506, <a href="https://doi.org/10.1029/2012WR012514">https://doi.org/10.1029/2012WR012514</a>.</li></ul></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../kinwave/">« Kinematic wave</a><a class="docs-footer-nextpage" href="../waterbodies/">Reservoirs and Lakes »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 0.27.25 on <span class="colophon-date" title="Tuesday 17 September 2024 06:54">Tuesday 17 September 2024</span>. Using Julia version 1.10.5.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
Loading

0 comments on commit c3eb00c

Please sign in to comment.