Skip to content

A correlation information-based spatiotemporal network for traffic flow forecasting

License

Notifications You must be signed in to change notification settings

DrownFish19/CorrSTN

Repository files navigation

CorrSTN

CorrSTN.png

Requirements

  • python 3.6
  • numpy == 1.19.5
  • minpy == 1.2.5
  • setuptools == 57.5.0
  • scikit-learn
  • pytorch == 1.7.0

create CorrSTN env

conda create -n CorrSTN python=3.6

install pytorch

conda install pytorch=1.7.0 torchvision torchaudio cudatoolkit=11.0 -c pytorch

install package for the maximal information coefficient

pip install setuptools==57.5.0
pip install minepy==1.2.5

install other packages

conda install scikit-learn
pip install tensorboardX

Train and Test

Step 1: Process dataset: In the root folder, prepare training, test and validation data.

python prepareData.py --config configurations/HZME_OUTFLOW_rdw.conf

In the lib folder, prepare SCorr. After the computing, move the result to each dataset folder.

python corr.py

Step 2: train or test the model:

python train_CorrSTN.py --config configurations/HZME_OUTFLOW_rdw.conf

prepare each dataset

python prepareData.py --config configurations/PEMS07.conf
python prepareData.py --config configurations/PEMS07_rdw.conf

python prepareData.py --config configurations/PEMS08.conf
python prepareData.py --config configurations/PEMS08_rdw.conf

python prepareData.py --config configurations/HZME_INFLOW.conf
python prepareData.py --config configurations/HZME_INFLOW_rdw.conf

python prepareData.py --config configurations/HZME_OUTFLOW.conf
python prepareData.py --config configurations/HZME_OUTFLOW_rdw.conf

train each dataset

python train_CorrSTN.py --config configurations/PEMS07.conf
python train_CorrSTN.py --config configurations/PEMS07_rdw.conf

python train_CorrSTN.py --config configurations/PEMS08.conf
python train_CorrSTN.py --config configurations/PEMS08_rdw.conf

python train_CorrSTN.py --config configurations/HZME_INFLOW.conf
python train_CorrSTN.py --config configurations/HZME_INFLOW_rdw.conf

python train_CorrSTN.py --config configurations/HZME_OUTFLOW.conf
python train_CorrSTN.py --config configurations/HZME_OUTFLOW_rdw.conf

Model

The trained model wiil be stored in experiments/$DataSetName$ folder, such as MAE_CorrSTN_h1d1w0_layer4_head8_dm64_channel1_dir2_drop0.00_1.00e-03_B16_K5_TcontextScaledSAtSE1TE.

We also supply our trained model in experiments folder, such as MAE_CorrSTN_h1d1w0_layer4_head8_dm64_channel1_dir2_drop0.00_1.00e-03_B16_K5_TcontextScaledSAtSE1TE-14.70-25.60-48.39, where the last three digits are the metrics of MAE, RMSE and MAPE. Furthermore we also supply the training logs for each model.

HOW TO TEST:

  1. delete the last three digits from our trained model folder, such as MAE_CorrSTN_h1d1w0_layer4_head8_dm64_channel1_dir2_drop0.00_1.00e-03_B16_K5_TcontextScaledSAtSE1TE-14.70-25.60-48.39 to MAE_CorrSTN_h1d1w0_layer4_head8_dm64_channel1_dir2_drop0.00_1.00e-03_B16_K5_TcontextScaledSAtSE1TE

  2. uncomment the last line in train_CorrSTN.py,

# train_main()
predict_main(0, test_loader, test_target_tensor, _max, _min, 'test')

and change 0 to the epoch number to be tested.

Results

results

Some points to note

  1. the batch sizes are different between the training phase and test and validation phase.

In the lib/utils.py,

line 537: val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size * 32)
line 550: test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size * 32)

so the batch size of test and validation phases is 32 times the batch size of training phases, which can improve the test speed.

Citation

If you found use this library useful, please consider citing

@article{zhu_correlation_2023,
	title = {A correlation information-based spatiotemporal network for traffic flow forecasting},
	issn = {0941-0643, 1433-3058},
	url = {https://link.springer.com/10.1007/s00521-023-08831-3},
	doi = {10.1007/s00521-023-08831-3},
	language = {en},
	urldate = {2023-08-06},
	journal = {Neural Computing and Applications},
	author = {Zhu, Weiguo and Sun, Yongqi and Yi, Xintong and Wang, Yan and Liu, Zhen},
	month = {aug},
	year = {2023},
}

About

A correlation information-based spatiotemporal network for traffic flow forecasting

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages