Skip to content

Unoffical PyTorch implementation of "Weakly-Supervised Mesh-Convolutional Hand Reconstruction in the Wild", CVPR 2020

License

Notifications You must be signed in to change notification settings

EAST-J/Youtubehand

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Youtubehand

Introduction


⚠Unofficial⚠ PyTorch implementation of Weakly-Supervised Mesh-Convolutional Hand Reconstruction in the Wild, CVPR 2020

2154_img

Install


My codebase is developed based on Ubuntu 18.06 Python 3.7.13 CUDA 11.4.

The resulting data structure should follow the hierarchy as below.

${REP_DIR}
|--conv
|--data
	|--freihand
|--datasets
|--images
|--out
	|checkpoints
	|board
	|demo
	|eval
|template
|utils
|...
|...

Trained Model Download


  • The pre-trained HRNet can be downloaded according to METRO

  • Download the trained model from GoogleDrive

  • Here I report my re-produced results on FreiHAND

Methods Backbone PA-MPJPE PA-MPVPE #Params
Origin ResNet50 8.4 8.6 -
Reproduced ResNet18 8.6 8.7 36M
Reproduced ResNet50 7.7 7.7 419M
Reproduced HRNet-W64 7.2 7.4 519M

Demo


  • Put the input images in the images folder
  • Run
python main.py --split demo --resume --exp_name $exp_name under the out folder e.g. global-resnet18$

Train


  • Follow METRO to download FreiHAND dataset.
  • Run
# resnet18
python main.py --split train --batch_size 64 --epochs 38 --decay_step 30 --backbone resnet18 --out_channels 64 128 256 512 --exp_name global-resnet18

Evaluation


  • Run
python main.py --split eval --exp_name $exp_name under the out folder e.g. global-resnet18$

Acknowledgement


The implementation modifies codes or draws inspiration from:

About

Unoffical PyTorch implementation of "Weakly-Supervised Mesh-Convolutional Hand Reconstruction in the Wild", CVPR 2020

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages