⚠Unofficial⚠ PyTorch implementation of Weakly-Supervised Mesh-Convolutional Hand Reconstruction in the Wild, CVPR 2020
My codebase is developed based on Ubuntu 18.06 Python 3.7.13 CUDA 11.4.
-
Install pytorch and torchvision according to your CUDA and python version.
-
Requirements
pip install -r requirements.txt
-
Install MPI-IS Mesh
-
You should accept MANO LICENCE. Download the MANO model and another files.
The resulting data structure should follow the hierarchy as below.
${REP_DIR}
|--conv
|--data
|--freihand
|--datasets
|--images
|--out
|checkpoints
|board
|demo
|eval
|template
|utils
|...
|...
-
The pre-trained HRNet can be downloaded according to METRO
-
Download the trained model from GoogleDrive
-
Here I report my re-produced results on FreiHAND
Methods | Backbone | PA-MPJPE | PA-MPVPE | #Params |
---|---|---|---|---|
Origin | ResNet50 | 8.4 | 8.6 | - |
Reproduced | ResNet18 | 8.6 | 8.7 | 36M |
Reproduced | ResNet50 | 7.7 | 7.7 | 419M |
Reproduced | HRNet-W64 | 7.2 | 7.4 | 519M |
- Put the input images in the
images
folder - Run
python main.py --split demo --resume --exp_name $exp_name under the out folder e.g. global-resnet18$
- Follow METRO to download FreiHAND dataset.
- Run
# resnet18
python main.py --split train --batch_size 64 --epochs 38 --decay_step 30 --backbone resnet18 --out_channels 64 128 256 512 --exp_name global-resnet18
- Run
python main.py --split eval --exp_name $exp_name under the out folder e.g. global-resnet18$
The implementation modifies codes or draws inspiration from: