Skip to content

Commit

Permalink
✨ Update website
Browse files Browse the repository at this point in the history
  • Loading branch information
o-laurent committed May 7, 2024
1 parent edba38d commit 92660f3
Show file tree
Hide file tree
Showing 14 changed files with 147 additions and 21 deletions.
File renamed without changes.
10 changes: 1 addition & 9 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,11 +1,3 @@
## <b>Webpage template</b>

This webpage template was made for a [colorful ECCV paper](http://richzhang.github.io/colorization/). See how the webpage looks [here](https://richzhang.github.io/webpage-template).

To use this template, clone the repo:

```
git clone https://github.com/richzhang/webpage-template.git
```

Copy the contents into a `gh-pages` branch of a GitHub repo. That will automatically make a webpage under address [GITHUB_USERNAME.github.io/REPO_NAME](GITHUB_USERNAME.github.io/REPO_NAME).
This webpage template comes from https://github.com/AaltoPML/FoRDE/tree/gh-page.
10 changes: 10 additions & 0 deletions _config.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
theme: jekyll-theme-cayman
openreview_url: https://openreview.net/forum?id=FOSBQuXgAq
arxiv_url: https://arxiv.org/abs/2310.08287
poster_url: ./assets/poster.pdf
slides_url: ./assets/slides.pdf
tu_url: https://github.com/ENSTA-U2IS-AI/torch-uncertainty
code_url: https://github.com/o-laurent/Symmetries-BNN-Posteriors
dataset_url: https://huggingface.co/datasets/torch-uncertainty/Checkpoints
title: A Symmetry-Aware Exploration of Bayesian Neural Network Posteriors
tagline: This website contains information regarding the paper A Symmetry-Aware Exploration of Bayesian Neural Network Posteriors.
102 changes: 102 additions & 0 deletions _layouts/default.html
Original file line number Diff line number Diff line change
@@ -0,0 +1,102 @@
<!DOCTYPE html>
<html lang="{{ site.lang | default: "en-US" }}">
<head>
<meta charset="UTF-8">

{% seo %}
<link rel="preconnect" href="https://fonts.gstatic.com">
<link rel="preload" href="https://fonts.googleapis.com/css?family=Open+Sans:400,700&display=swap" as="style" type="text/css" crossorigin>
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="theme-color" content="#157878">
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
<link rel="stylesheet" href="{{ '/assets/css/style.css?v=' | append: site.github.build_revision | relative_url }}">
{% include head-custom.html %}
<!-- MathJax -->
<style>
body {
color: #344854;
}
img {
display: block;
margin: auto;
}
.MathJax {
padding: 0.25em;
min-width: 0 ! important;
overflow-x: auto;
overflow-y: hidden;
}
table {
display: table !important;
}
.my_blue {
color: #4472C4;
}
.my_red {
color: #FF0000;
}
.my_orange {
color: #ED7D31;
}
.my_deepred {
color: rgb(196, 78, 82)
}
.my_box {
border: 2px solid #159957;
border-radius: 20px;
padding: 10px;
}
blockquote p strong {
color: #ED7D31;
}
blockquote p {
color: #344854;
}
</style>
<script>
MathJax = {
tex: {
tags: 'ams',
autoload: {
boldsymbol: ['boldsymbol']
}
}
};
</script>
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script type="text/javascript" id="MathJax-script" async
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-svg.js">
</script>
</head>
<body>
<header class="page-header" role="banner">
<h1 class="project-name">{{ page.title | default: site.title | default: site.github.repository_name }}</h1>
<h2 class="project-tagline">{{ page.publication }}</h2>
<h2 class="project-tagline">{{ page.description | default: site.description | default: site.github.project_tagline }}</h2>
{% if site.github.is_project_page %}
<a href="{{ site.openreview_url }}" class="btn">OpenReview</a>
<a href="{{ site.arxiv_url }}" class="btn">ArXiv</a>
<a href="{{ site.tu_url }}" class="btn">TorchUncertainty</a>
<a href="{{ site.code_url }}" class="btn">Code</a>
<a href="{{ site.dataset_url }}" class="btn">Dataset</a>
<a href="{{ site.poster_url }}" class="btn">Poster</a>
<a href="{{ site.slides_url }}" class="btn">Slides</a>
<!-- <a href="{{ site.video_url }}" class="btn">Presentation</a> -->
{% endif %}
{% if site.show_downloads %}
<a href="{{ site.github.zip_url }}" class="btn">Download .zip</a>
<a href="{{ site.github.tar_url }}" class="btn">Download .tar.gz</a>
{% endif %}
</header>

<main id="content" class="main-content" role="main">
{{ content }}

<footer class="site-footer">
{% if site.github.is_project_page %}
<span class="site-footer-owner">Olivier Laurent • Emanuel Aldea • Gianni Franchi • 2024 • Template by Trung Trinh et al.</span>
{% endif %}
</footer>
</main>
</body>
</html>
File renamed without changes
Binary file added assets/poster.pdf
Binary file not shown.
Binary file added assets/slides.pdf
Binary file not shown.
30 changes: 30 additions & 0 deletions index.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
---
title: A Symmetry-Aware Exploration of Bayesian Neural Network Posteriors
publication: Poster at the Twelfth International Conference on Learning Representations (ICLR) 2024
description: Olivier Laurent, Emanuel Aldea, & Gianni Franchi
---

*This website contains information regarding the paper A Symmetry-Aware Exploration of Bayesian Neural Network Posteriors.*

> **TL;DR**: We explore the Bayesian posterior of modern deep neural networks, highlighting the impact of weight-space symmetries.
Please cite our work if you find it useful:

```bibtex
@inproceedings{laurent2024symmetry,
title={A symmetry-aware exploration of bayesian neural network posteriors},
author={Laurent, Olivier and Aldea, Emanuel and Franchi, Gianni},
booktitle={ICLR},
year={2024}
}
```

<img src="./assets/example_axis.png" alt="drawing" width="100%" max-width="1000px">

# Abstract

The distribution of modern deep neural networks (DNNs) weights -- crucial for uncertainty quantification and robustness -- is an eminently complex object due to its extremely high dimensionality. This paper presents one of the first large-scale explorations of the posterior distribution of deep Bayesian Neural Networks (BNNs), expanding its study to real-world vision tasks and architectures. Specifically, we investigate the optimal approach for approximating the posterior, analyze the connection between posterior quality and uncertainty quantification, delve into the impact of modes on the posterior, and explore methods for visualizing the posterior. Moreover, we uncover weight-space symmetries as a critical aspect for understanding the posterior. To this extent, we develop an in-depth assessment of the impact of both permutation and scaling symmetries that tend to obfuscate the Bayesian posterior. While the first type of transformation is known for duplicating modes, we explore the relationship between the latter and L2 regularization, challenging previous misconceptions. Finally, to help the community improve our understanding of the Bayesian posterior, we release the <a href="https://huggingface.co/datasets/torch-uncertainty/Checkpoints">first large-scale checkpoint dataset</a>, including thousands of real-world models, along with our <a href="https://github.com/ENSTA-U2IS-AI/torch-uncertainty">code</a>.

#

The code consists of a library for training and evaluating the models - TorchUncertainty, a dataset available for download on <a href="https://huggingface.co/datasets/torch-uncertainty/Checkpoints">Hugging Face</a> and specific code that will be made available in <a href=" https://github.com/o-laurent/Symmetries-BNN-Posteriors">this repository</a>.
10 changes: 4 additions & 6 deletions index.html → old/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -172,19 +172,17 @@
</table>
</center>

<center>
<!-- <center>
<table align=center width=850px>
<hr>
<center>
<center> -->
<hr>
<center><h1>Talk</h1></center>
<p align="center">
<iframe width="900" height="400" src="example_axis.png" frameborder="0" allow="autoplay; encrypted-media" allowfullscreen></iframe>
</p>
<p style="text-align:center;">Caption: Weight-space symmetries greatly impact the estimated Bayesian posterior. Permutation symmetries clearly increase the number of modes of the posterior distribution in the case of the last layer of a 2-hidden neuron perceptron.</p>



<hr>

<table align=center width=850px>
Expand All @@ -198,10 +196,10 @@
<br>

<hr>
<center><h1>Talk</h1></center>
<!-- <center><h1>Talk</h1></center>
<p align="center">
<iframe width="800" height="600" src="https://recorder-v3.slideslive.com/?share=90903&s=bbb2aecc-d3e2-474a-8dc3-a896a9b03584" frameborder="0" allow="autoplay; encrypted-media" allowfullscreen align="center"></iframe>
</p>
</p> -->

<table align=center width=800px>
<br>
Expand Down
6 changes: 0 additions & 6 deletions resources/bibtex.txt

This file was deleted.

Binary file removed resources/method_diagram.png
Binary file not shown.
Binary file removed resources/paper.png
Binary file not shown.
Binary file removed resources/teaser.mp4
Binary file not shown.
Binary file removed resources/teaser.png
Binary file not shown.

0 comments on commit 92660f3

Please sign in to comment.