Skip to content

This repository is providing the neccasary codes for running and analysis the two well-established satellite gap-filling methods ,DINEOF and DINCAE, for gap-filling of total chlorophyl-a (TChla) and chlorophyll-a of phytoplankton functional type dataset provided by Copernicus Marine Service.

License

Notifications You must be signed in to change notification settings

EhsanMehdipour/PFT_gapfilling

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Gapfilling of phytoplankton functional types (PFT)

Objective: This repository provides the necessary scripts for conducting and analysing two well-established satellite gap-filling methods, DINEOF and DINCAE, for gap-filling of total chlorophyll-a (TChla) and chlorophyll-a concentrations of five major PFT datasets provided by Copernicus Marine Service.

Project: Assessment of gap-filling techniques applied to satellite phytoplankton composition products for the Atlantic Ocean

Gradient-filed

Time-series of Diatom

Requirements:

Models:

DINEOF

DINCAE

Datasets:

PFT Dataset ID: cmems_obs-oc_glo_bgc-plankton_my_l3-multi-4km_P1D

SST Dataset ID: METOFFICE-GLO-SST-L4-NRT-OBS-SST-V2

Installation:

Use Mamba or Conda for installation of necessary packages

mamba create --name PFT_gapfilling -c conda-forge --file requirements.txt

or

conda create --name PFT_gapfilling -c conda-forge --file requirements.txt

Type II regression: For type II regression in matchup analysis use pylr2. The installation is explained in the package or directly use pip and git:

pip install git+https://github.com/OceanOptics/pylr2.git

Interactive Environment

You can connect the environment to JupyterLab using:

python -m ipykernel install --user --name=PFT_gapfilling --display-name "PFT_gapfilling"

Execute

All the necessary parameters for running all the scripts are stored in the params.py file. You can define the regions of interest (ROI) by changing the data/regions.csv file for defining different regions.

Credit

© Ehsan Mehdipour, 2025. ([email protected])

Alfred Wegener Insitute for Polar and Marine Research, Bremerhaven, Germany

This work is licensed under the GNU General Public License v3.0 (GPL-3.0).

About

This repository is providing the neccasary codes for running and analysis the two well-established satellite gap-filling methods ,DINEOF and DINCAE, for gap-filling of total chlorophyl-a (TChla) and chlorophyll-a of phytoplankton functional type dataset provided by Copernicus Marine Service.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages