Skip to content

Commit

Permalink
Updated README
Browse files Browse the repository at this point in the history
  • Loading branch information
Ekeany committed Sep 27, 2020
1 parent 9aee98b commit f2fff81
Showing 1 changed file with 24 additions and 2 deletions.
26 changes: 24 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,27 @@ X.head()
Feature_Selector = BorutaShap(importance_measure='shap',
classification=False)

Feature_Selector.fit(X=X, y=y, n_trials=100, random_state=0)
'''
Sample: Boolean
if true then a rowise sample of the data will be used to calculate the feature importance values
sample_fraction: float
The sample fraction of the original data used in calculating the feature importance values only
used if Sample==True.
train_or_test: string
Decides whether the feature improtance should be calculated on out of sample data see the dicussion here.
https://compstat-lmu.github.io/iml_methods_limitations/pfi-data.html#introduction-to-test-vs.training-data
normalize: boolean
if true the importance values will be normalized using the z-score formula
verbose: Boolean
a flag indicator to print out all the rejected or accepted features.
'''
Feature_Selector.fit(X=X, y=y, n_trials=100, sample=False,
train_or_test = 'test', normalize=True,
verbose=True)
```

<img src="https://github.com/Ekeany/Boruta-Shap/blob/master/images/BostonOutput.PNG?raw=true">
Expand Down Expand Up @@ -88,7 +108,9 @@ Feature_Selector = BorutaShap(model=model,
importance_measure='shap',
classification=True)

Feature_Selector.fit(X=X, y=y, n_trials=100, random_state=0)
Feature_Selector.fit(X=X, y=y, n_trials=100, sample=False,
train_or_test = 'test', normalize=True,
verbose=True)
```
<img src="https://github.com/Ekeany/Boruta-Shap/blob/master/images/binaryoutput.PNG?raw=true">

Expand Down

0 comments on commit f2fff81

Please sign in to comment.