Skip to content

EngineerDanny/ml_with_monsoon

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Machine Learning with Monsoon (NAUs Supercomputer)

This repository shows the code to explain some of the basic concepts you will need in your machine learning workflow using monsoon.

Connecting to Monsoon

  • Access through the monsoon dashboard
  • Access through the secure shell (ssh). On your terminal, run below and type your password:
ssh -Y <username>@monsoon.hpc.nau.edu

Interactive/Debug Work

  • Request a compute node with 4GB of RAM and 1 cpu for 24 hours
srun -t 24:00:00 --mem=4GB --cpus-per-task=1 --pty bash
  • Request a compute node with 8GB of RAM and 1 cpu for 1 hour
srun -t 1:00:00 --mem=8GB --cpus-per-task=1 python analysis.py

Submitting Jobs

You can also write your program and submit a job shell script for you to be placed in the queue. An example job script (jobscript.sh) is:

#!/bin/bash
#SBATCH --job-name=test
#SBATCH --output=/scratch/da2343/output.txt #SBATCH --error=/scratch/da2343/error.txt #SBATCH --time=20:00
#SBATCH --mem=1GB
#SBATCH --cpus-per-task=1
python analysis.py

Submit the job script using:

sbatch jobscript.sh

time_graph

parallel_algo_acc

loss_df_01

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published