Skip to content

Commit

Permalink
fixes for CRAN
Browse files Browse the repository at this point in the history
  • Loading branch information
Tomislav Hengl committed Oct 7, 2021
1 parent 0b94823 commit 8d817cd
Show file tree
Hide file tree
Showing 5 changed files with 338 additions and 338 deletions.
78 changes: 39 additions & 39 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,39 +1,39 @@
Package: plotKML
Version: 0.8-1
Date: 2021-04-12
Title: Visualization of Spatial and Spatio-Temporal Objects in Google Earth
Author: Tomislav Hengl [cre, aut], Andrea Gilardi [ctb], Pierre Roudier [ctb], Dylan Beaudette [ctb], Edzer Pebesma [ctb], Michael Blaschek [ctb]
Authors@R: c(person("Tomislav", "Hengl", role = c("cre", "aut"),
email = "[email protected]"),
person("Andrea", "Gilardi", role = "ctb"),
person("Pierre", "Roudier", role = "ctb"),
person("Dylan", "Beaudette", role = "ctb"),
person("Edzer", "Pebesma", role = "ctb"),
person("Michael", "Blaschek", role = "ctb"))
Maintainer: Tomislav Hengl <[email protected]>
Depends: R (>= 3.5.0)
Imports: methods, tools, utils, XML, landmap, sp, raster, rgdal, aqp, gstat, spacetime, colorspace, plotrix, dismo, pixmap, plyr, stringr, colorRamps, scales, zoo, RColorBrewer, RSAGA, classInt, sf, stars
Suggests:
adehabitatLT,
maptools,
fossil,
rjson,
animation,
spatstat,
spatstat.linnet,
spatstat.geom,
RCurl,
rgbif,
Hmisc,
uuid,
intervals,
reshape,
gdalUtils,
snowfall,
parallel,
tinytex,
testthat
Description: Writes sp-class, spacetime-class, raster-class and similar spatial and spatio-temporal objects to KML following some basic cartographic rules.
License: GPL
URL: https://github.com/Envirometrix/plotKML
LazyLoad: yes
Package: plotKML
Version: 0.8-2
Date: 2021-10-06
Title: Visualization of Spatial and Spatio-Temporal Objects in Google Earth
Author: Tomislav Hengl [cre, aut], Andrea Gilardi [ctb], Pierre Roudier [ctb], Dylan Beaudette [ctb], Edzer Pebesma [ctb], Michael Blaschek [ctb]
Authors@R: c(person("Tomislav", "Hengl", role = c("cre", "aut"),
email = "[email protected]"),
person("Andrea", "Gilardi", role = "ctb"),
person("Pierre", "Roudier", role = "ctb"),
person("Dylan", "Beaudette", role = "ctb"),
person("Edzer", "Pebesma", role = "ctb"),
person("Michael", "Blaschek", role = "ctb"))
Maintainer: Tomislav Hengl <[email protected]>
Depends: R (>= 3.5.0)
Imports: methods, tools, utils, XML, landmap, sp, raster, rgdal, aqp, gstat, spacetime, colorspace, plotrix, dismo, pixmap, plyr, stringr, colorRamps, scales, zoo, RColorBrewer, RSAGA, classInt, sf, stars
Suggests:
adehabitatLT,
maptools,
fossil,
rjson,
animation,
spatstat,
spatstat.linnet,
spatstat.geom,
RCurl,
rgbif,
Hmisc,
uuid,
intervals,
reshape,
gdalUtils,
snowfall,
parallel,
tinytex,
testthat
Description: Writes sp-class, spacetime-class, raster-class and similar spatial and spatio-temporal objects to KML following some basic cartographic rules.
License: GPL
URL: https://github.com/Envirometrix/plotKML
LazyLoad: yes
182 changes: 91 additions & 91 deletions man/baranja.Rd
Original file line number Diff line number Diff line change
@@ -1,91 +1,91 @@
\name{baranja}
\docType{data}
\encoding{latin1}
\alias{barxyz}
\alias{bargrid}
\alias{barstr}
\title{Baranja hill case study}
\description{Baranja hill is a 4 by 4 km large study area in the Baranja region, eastern Croatia (corresponds to a size of an aerial photograph). This data set has been extensively used to describe various DEM modelling and analysis steps (see \href{http://geomorphometry.org/book}{Hengl and Reuter, 2008}; Hengl et al., 2010; \doi{10.5194/hess-14-1153-2010}). Object \code{barxyz} contains 6370 precise observations of elevations (from field survey and digitized from the stereo images); \code{bargrid} contains \emph{observed} probabilities of streams (digitized from the 1:5000 topo map); \code{barstr} contains 100 simulated stream networks (\code{"SpatialLines"}) using \code{barxyz} point data as input (see examples below).}
\usage{data(bargrid)}
\format{
The \code{bargrid} data frame (regular grid at 30 m intervals) contains the following columns:
\describe{
\item{\code{p.obs}}{observed probability of stream (0-1)}
\item{\code{x}}{a numeric vector; x-coordinate (m) in the MGI / Balkans zone 6 }
\item{\code{y}}{a numeric vector; y-coordinate (m) in the MGI / Balkans zone 6 }
}
}
\author{ Tomislav Hengl }
\references{
\itemize{
\item Hengl, T., Reuter, H.I. (eds), (2008) \href{http://geomorphometry.org/book}{Geomorphometry: Concepts, Software, Applications}. Developments in Soil Science, vol. 33, Elsevier, 772 p.
\item Hengl, T., Heuvelink, G. B. M., van Loon, E. E., (2010) On the uncertainty of stream networks derived from elevation data: the error propagation approach. Hydrology and Earth System Sciences, 14:1153-1165. \doi{10.5194/hess-14-1153-2010}
\item \url{http://geomorphometry.org/content/baranja-hill}
}
}
\note{Consider using the 30 m resolution grid (see \code{bargrid}) as the target resolution (output maps).
}
\examples{
library(sp)
library(gstat)
## sampled elevations:
data(barxyz)
prj = "+proj=tmerc +lat_0=0 +lon_0=18 +k=0.9999 +x_0=6500000 +y_0=0 +ellps=bessel +units=m
+towgs84=550.499,164.116,475.142,5.80967,2.07902,-11.62386,0.99999445824"
coordinates(barxyz) <- ~x+y
proj4string(barxyz) <- CRS(prj)
## grids:
data(bargrid)
data(barstr)
coordinates(bargrid) <- ~x+y
gridded(bargrid) <- TRUE
proj4string(bargrid) <- barxyz@proj4string
bargrid@grid
\dontrun{## Example with simulated streams:
data(R_pal)
library(rgdal)
library(RSAGA)
pnt = list("sp.points", barxyz, col="black", pch="+")
spplot(bargrid[1], sp.layout=pnt,
col.regions = R_pal[["blue_grey_red"]])
## Deriving stream networks using geostatistical simulations:
Z.ovgm <- vgm(psill=1831, model="Mat", range=1051, nugget=0, kappa=1.2)
sel <- runif(length(barxyz$Z))<.2
N.sim <- 5
## geostatistical simulations:
DEM.sim <- krige(Z~1, barxyz[sel,], bargrid, model=Z.ovgm, nmax=20,
nsim=N.sim, debug.level=-1)
## Note: this operation can be time consuming

stream.list <- list(rep(NA, N.sim))
## derive stream networks in SAGA GIS:
for (i in 1:N.sim) {
writeGDAL(DEM.sim[i], paste("DEM", i, ".sdat", sep=""),
drivername = "SAGA", mvFlag = -99999)
## filter the spurious sinks:
rsaga.fill.sinks(in.dem=paste("DEM", i, ".sgrd", sep=""),
out.dem="DEMflt.sgrd", check.module.exists = FALSE)
## extract the channel network SAGA GIS:
rsaga.geoprocessor(lib="ta_channels", module=0,
param=list(ELEVATION="DEMflt.sgrd",
CHNLNTWRK=paste("channels", i, ".sgrd", sep=""),
CHNLROUTE="channel_route.sgrd",
SHAPES="channels.shp",
INIT_GRID="DEMflt.sgrd",
DIV_CELLS=3, MINLEN=40),
check.module.exists = FALSE,
show.output.on.console=FALSE)
stream.list[[i]] <- readOGR("channels.shp", "channels",
verbose=FALSE)
proj4string(stream.list[[i]]) <- barxyz@proj4string
}
# plot all derived streams at top of each other:
streams.plot <- as.list(rep(NA, N.sim))
for(i in 1:N.sim){
streams.plot[[i]] <- list("sp.lines", stream.list[[i]])
}
spplot(DEM.sim[1], col.regions=grey(seq(0.4,1,0.025)), scales=list(draw=T),
sp.layout=streams.plot)
}
}
\keyword{datasets}
\name{baranja}
\docType{data}
\encoding{latin1}
\alias{barxyz}
\alias{bargrid}
\alias{barstr}
\title{Baranja hill case study}
\description{Baranja hill is a 4 by 4 km large study area in the Baranja region, eastern Croatia (corresponds to a size of an aerial photograph). This data set has been extensively used to describe various DEM modelling and analysis steps (see \href{https://geomorphometry.org/geomorphometry-concepts-software-applications/}{Hengl and Reuter, 2008}; Hengl et al., 2010; \doi{10.5194/hess-14-1153-2010}). Object \code{barxyz} contains 6370 precise observations of elevations (from field survey and digitized from the stereo images); \code{bargrid} contains \emph{observed} probabilities of streams (digitized from the 1:5000 topo map); \code{barstr} contains 100 simulated stream networks (\code{"SpatialLines"}) using \code{barxyz} point data as input (see examples below).}
\usage{data(bargrid)}
\format{
The \code{bargrid} data frame (regular grid at 30 m intervals) contains the following columns:
\describe{
\item{\code{p.obs}}{observed probability of stream (0-1)}
\item{\code{x}}{a numeric vector; x-coordinate (m) in the MGI / Balkans zone 6 }
\item{\code{y}}{a numeric vector; y-coordinate (m) in the MGI / Balkans zone 6 }
}
}
\author{ Tomislav Hengl }
\references{
\itemize{
\item Hengl, T., Reuter, H.I. (eds), (2008) \href{https://geomorphometry.org/geomorphometry-concepts-software-applications/}{Geomorphometry: Concepts, Software, Applications}. Developments in Soil Science, vol. 33, Elsevier, 772 p.
\item Hengl, T., Heuvelink, G. B. M., van Loon, E. E., (2010) On the uncertainty of stream networks derived from elevation data: the error propagation approach. Hydrology and Earth System Sciences, 14:1153-1165. \doi{10.5194/hess-14-1153-2010}
\item \url{https://geomorphometry.org/baranja-hill/}
}
}
\note{Consider using the 30 m resolution grid (see \code{bargrid}) as the target resolution (output maps).
}
\examples{
library(sp)
library(gstat)
## sampled elevations:
data(barxyz)
prj = "+proj=tmerc +lat_0=0 +lon_0=18 +k=0.9999 +x_0=6500000 +y_0=0 +ellps=bessel +units=m
+towgs84=550.499,164.116,475.142,5.80967,2.07902,-11.62386,0.99999445824"
coordinates(barxyz) <- ~x+y
proj4string(barxyz) <- CRS(prj)
## grids:
data(bargrid)
data(barstr)
coordinates(bargrid) <- ~x+y
gridded(bargrid) <- TRUE
proj4string(bargrid) <- barxyz@proj4string
bargrid@grid
\dontrun{## Example with simulated streams:
data(R_pal)
library(rgdal)
library(RSAGA)
pnt = list("sp.points", barxyz, col="black", pch="+")
spplot(bargrid[1], sp.layout=pnt,
col.regions = R_pal[["blue_grey_red"]])
## Deriving stream networks using geostatistical simulations:
Z.ovgm <- vgm(psill=1831, model="Mat", range=1051, nugget=0, kappa=1.2)
sel <- runif(length(barxyz$Z))<.2
N.sim <- 5
## geostatistical simulations:
DEM.sim <- krige(Z~1, barxyz[sel,], bargrid, model=Z.ovgm, nmax=20,
nsim=N.sim, debug.level=-1)
## Note: this operation can be time consuming

stream.list <- list(rep(NA, N.sim))
## derive stream networks in SAGA GIS:
for (i in 1:N.sim) {
writeGDAL(DEM.sim[i], paste("DEM", i, ".sdat", sep=""),
drivername = "SAGA", mvFlag = -99999)
## filter the spurious sinks:
rsaga.fill.sinks(in.dem=paste("DEM", i, ".sgrd", sep=""),
out.dem="DEMflt.sgrd", check.module.exists = FALSE)
## extract the channel network SAGA GIS:
rsaga.geoprocessor(lib="ta_channels", module=0,
param=list(ELEVATION="DEMflt.sgrd",
CHNLNTWRK=paste("channels", i, ".sgrd", sep=""),
CHNLROUTE="channel_route.sgrd",
SHAPES="channels.shp",
INIT_GRID="DEMflt.sgrd",
DIV_CELLS=3, MINLEN=40),
check.module.exists = FALSE,
show.output.on.console=FALSE)
stream.list[[i]] <- readOGR("channels.shp", "channels",
verbose=FALSE)
proj4string(stream.list[[i]]) <- barxyz@proj4string
}
# plot all derived streams at top of each other:
streams.plot <- as.list(rep(NA, N.sim))
for(i in 1:N.sim){
streams.plot[[i]] <- list("sp.lines", stream.list[[i]])
}
spplot(DEM.sim[1], col.regions=grey(seq(0.4,1,0.025)), scales=list(draw=T),
sp.layout=streams.plot)
}
}
\keyword{datasets}
Loading

0 comments on commit 8d817cd

Please sign in to comment.