- 表示学习方法
- 基于事实的表示学习方法
- 基于距离的评分函数:翻译模型
- TransE及其拓展方法
- TransE: Translating embeddings for modeling multi-relational data.
- TransH: Knowledge graph embedding by translating on hyperplanes.
- TransR: Learning entity and relation embeddings for knowledge graph completion.
- TransD, TransSparse, TransM, ManifoldE, TransF, TransA
- 高斯分布表示向量
- KG2E: Learning to represent knowledge graphs with gaussian embedding.
- TransE及其拓展方法
- 基于相似度的评分函数:语义匹配模型
- RESCAL及其拓展方法
- RESCAL: A three-way model for collective learning on multi-relational data.
- HolE: Holographic embeddings of knowledge graphs.
- DisMult: Embedding entities and relations for learning and inference in knowledge bases.
- ComplEx: Complex embeddings for simple link prediction.
- 基于神经网络的语义匹配模型
- SME: A semantic matching energy function for learning with multi-relational data.
- NAM: Probabilistic reasoning via deep learning: Neural association models.
- RESCAL及其拓展方法
- 模型训练方法
- 根据开放世界假设进行训练
- 根据封闭世界假设进行训练
- 基于距离的评分函数:翻译模型
- 融合多源信息的表示学习方法
- 实体类型
- SSE: Semantically smooth knowledge graph embedding.
- TKRL: Representation learning of knowledge graphs with entity descriptions.
- 关系路径
- Modeling relation paths for representation learning of knowledge bases.
- 逻辑规则
- Knowledge base completion using embeddings and rules.
- Jointly embedding knowledge graphs and logical rules.
- 其它多源信息:文本描述信息, 实体属性, 图结构等
- 实体类型
- 基于事实的表示学习方法
- 知识图谱应用
- 链路预测
- Modeling relation paths for representation learning of knowledge bases.
- 三元组分类
- Learning entity and relation embeddings for knowledge graph completion.
- 实体识别
- A semantic matching energy function for learning with multi-relational data.
- A three-way model for collective learning on multi-relational data.
- 关系抽取
- Relation extraction with matrix factorization and universal schemas.
- Connecting language and knowledge bases with embedding models for relation extraction.
- 自动问答
- 推荐系统
- 链路预测