-
Notifications
You must be signed in to change notification settings - Fork 182
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* add qwen2-vl * qwen2 vl (black isort) * qwen2 vl black * black * without qwen vl utils and temp images * black * isort * qwen2 vl batch generate * remove unused import * remove unreferenced
- Loading branch information
Showing
2 changed files
with
244 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,243 @@ | ||
from typing import List, Optional, Tuple, Union | ||
|
||
import torch | ||
from accelerate import Accelerator, DistributedType | ||
from loguru import logger as eval_logger | ||
from tqdm import tqdm | ||
from transformers import AutoProcessor, AutoTokenizer, Qwen2VLForConditionalGeneration | ||
|
||
from lmms_eval import utils | ||
from lmms_eval.api.instance import Instance | ||
from lmms_eval.api.model import lmms | ||
from lmms_eval.api.registry import register_model | ||
|
||
|
||
@register_model("qwen2_vl") | ||
class Qwen2_VL(lmms): | ||
""" | ||
Qwen2_VL Model | ||
"https://github.com/QwenLM/Qwen2-VL" | ||
""" | ||
|
||
def __init__( | ||
self, | ||
pretrained: str = "Qwen/Qwen2-VL-7B-Instruct", | ||
device: Optional[str] = "cuda", | ||
device_map: Optional[str] = "cuda", | ||
batch_size: Optional[Union[int, str]] = 1, | ||
use_cache=True, | ||
use_flash_attention_2: Optional[bool] = True, | ||
**kwargs, | ||
) -> None: | ||
super().__init__() | ||
# Do not use kwargs for now | ||
assert kwargs == {}, f"Unexpected kwargs: {kwargs}" | ||
|
||
accelerator = Accelerator() | ||
if accelerator.num_processes > 1: | ||
self._device = torch.device(f"cuda:{accelerator.local_process_index}") | ||
self.device_map = f"cuda:{accelerator.local_process_index}" | ||
elif accelerator.num_processes == 1 and device_map == "auto": | ||
self._device = torch.device(device) | ||
self.device_map = device_map | ||
else: | ||
self._device = torch.device(f"cuda:{accelerator.local_process_index}") | ||
self.device_map = f"cuda:{accelerator.local_process_index}" | ||
|
||
if use_flash_attention_2: | ||
self._model = Qwen2VLForConditionalGeneration.from_pretrained( | ||
pretrained, | ||
torch_dtype="auto", | ||
device_map=self.device_map, | ||
attn_implementation="flash_attention_2", | ||
).eval() | ||
else: | ||
self._model = Qwen2VLForConditionalGeneration.from_pretrained(pretrained, torch_dtype="auto", device_map=self.device_map).eval() | ||
self.processor = AutoProcessor.from_pretrained(pretrained) | ||
self._tokenizer = AutoTokenizer.from_pretrained(pretrained) | ||
|
||
self._config = self.model.config | ||
self.batch_size_per_gpu = int(batch_size) | ||
self.use_cache = use_cache | ||
|
||
if accelerator.num_processes > 1: | ||
assert accelerator.distributed_type in [ | ||
DistributedType.FSDP, | ||
DistributedType.MULTI_GPU, | ||
], "Unsupported distributed type provided. Only DDP and FSDP are supported." | ||
if accelerator.distributed_type == DistributedType.FSDP: | ||
self._model = accelerator.prepare(self.model) | ||
else: | ||
self._model = accelerator.prepare_model(self.model, evaluation_mode=True) | ||
self.accelerator = accelerator | ||
if self.accelerator.is_local_main_process: | ||
eval_logger.info(f"Using {accelerator.num_processes} devices with data parallelism") | ||
self._rank = self.accelerator.local_process_index | ||
self._world_size = self.accelerator.num_processes | ||
else: | ||
self._rank = 0 | ||
self._word_size = 1 | ||
|
||
@property | ||
def config(self): | ||
# return the associated transformers.AutoConfig for the given pretrained model. | ||
return self._config | ||
|
||
@property | ||
def tokenizer(self): | ||
return self._tokenizer | ||
|
||
@property | ||
def model(self): | ||
# returns the model, unwrapping it if using Accelerate | ||
if hasattr(self, "accelerator"): | ||
return self.accelerator.unwrap_model(self._model) | ||
else: | ||
return self._model | ||
|
||
@property | ||
def eot_token_id(self): | ||
return self.tokenizer.eos_token_id | ||
|
||
@property | ||
def max_length(self): | ||
return self._max_length | ||
|
||
@property | ||
def batch_size(self): | ||
return self.batch_size_per_gpu | ||
|
||
@property | ||
def device(self): | ||
return self._device | ||
|
||
@property | ||
def rank(self): | ||
return self._rank | ||
|
||
@property | ||
def world_size(self): | ||
return self._world_size | ||
|
||
def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]: | ||
raise NotImplementedError("Loglikelihood is not implemented for Qwen2_VL") | ||
|
||
def flatten(self, input): | ||
new_list = [] | ||
for i in input: | ||
for j in i: | ||
new_list.append(j) | ||
return new_list | ||
|
||
def generate_until(self, requests: List[Instance]) -> List[str]: | ||
res = [] | ||
|
||
def _collate(x): | ||
# the negative sign on len(toks) sorts descending - this has a few advantages: | ||
# - time estimates will always be over not underestimates, which is more useful for planning | ||
# - to know the size of a batch when going through the list, you know the first one is always the batch | ||
# padded context length. this is useful to simplify the batching logic and more importantly to make | ||
# automatic adaptive batches much much easier to implement | ||
# - any OOMs will happen right away rather than near the end | ||
toks = self.tokenizer.encode(x[0]) | ||
return -len(toks), x[0] | ||
|
||
pbar = tqdm(total=len(requests), disable=(self.rank != 0), desc="Model Responding") | ||
# we group requests by their generation_kwargs, | ||
# so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling | ||
# in the same batch. | ||
re_ords = utils.Collator([reg.args for reg in requests], _collate, grouping=True) | ||
chunks = re_ords.get_batched(n=self.batch_size, batch_fn=None) | ||
for chunk in chunks: | ||
contexts, all_gen_kwargs, doc_to_visual, doc_id, task, split = zip(*chunk) | ||
task = task[0] | ||
split = split[0] | ||
visuals = [doc_to_visual[0](self.task_dict[task][split][ids]) for ids in doc_id] | ||
visuals = self.flatten(visuals) | ||
|
||
gen_kwargs = all_gen_kwargs[0] | ||
|
||
# Set default values for until and max_new_tokens | ||
until = [self.tokenizer.decode(self.eot_token_id)] | ||
|
||
# Update values from gen_kwargs if present | ||
if "until" in gen_kwargs: | ||
until = gen_kwargs.pop("until") | ||
if isinstance(until, str): | ||
until = [until] | ||
elif not isinstance(until, list): | ||
raise ValueError(f"Expected `gen_kwargs['until']` to be of type Union[str,list] but got {type(until)}") | ||
|
||
if isinstance(contexts, tuple): | ||
contexts = list(contexts) | ||
|
||
for i in range(len(contexts)): | ||
if "<image>" in contexts[i]: | ||
contexts[i] = contexts[i].replace("<image>", "") | ||
|
||
messages = [] | ||
|
||
if len(visuals) == 0: | ||
for context in contexts: | ||
message = [{"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": [{"type": "text", "text": context}]}] | ||
messages.append(message) | ||
else: | ||
for _, context in zip(visuals, contexts): | ||
message = [{"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": [{"type": "image"}, {"type": "text", "text": context}]}] | ||
messages.append(message) | ||
|
||
texts = [self.processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True) for msg in messages] | ||
inputs = self.processor(text=texts, images=[visuals], padding=True, return_tensors="pt") | ||
|
||
if self.device_map == "auto": | ||
inputs = inputs.to("cuda") | ||
else: | ||
inputs = inputs.to(self.device) | ||
|
||
# preconfigure gen_kwargs with defaults | ||
if "image_sizes" not in gen_kwargs: | ||
try: | ||
gen_kwargs["image_sizes"] = [visuals[0].size] | ||
except: | ||
gen_kwargs["image_sizes"] = None | ||
if "max_new_tokens" not in gen_kwargs: | ||
gen_kwargs["max_new_tokens"] = 128 | ||
if "temperature" not in gen_kwargs: | ||
gen_kwargs["temperature"] = 0 | ||
if "top_p" not in gen_kwargs: | ||
gen_kwargs["top_p"] = None | ||
if "num_beams" not in gen_kwargs: | ||
gen_kwargs["num_beams"] = 1 | ||
|
||
pad_token_id = self.tokenizer.pad_token_id | ||
|
||
cont = self.model.generate( | ||
**inputs, | ||
eos_token_id=self.tokenizer.eos_token_id, | ||
pad_token_id=pad_token_id, | ||
do_sample=True if gen_kwargs["temperature"] > 0 else False, | ||
temperature=gen_kwargs["temperature"], | ||
top_p=gen_kwargs["top_p"], | ||
num_beams=gen_kwargs["num_beams"], | ||
max_new_tokens=gen_kwargs["max_new_tokens"], | ||
use_cache=self.use_cache, | ||
# kwargs=gen_kwargs | ||
) | ||
|
||
generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, cont)] | ||
answers = self.processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False) | ||
for i, ans in enumerate(answers): | ||
for term in until: | ||
if len(term) > 0: | ||
ans = ans.split(term)[0] | ||
answers[i] = ans | ||
|
||
for ans, context in zip(answers, contexts): | ||
res.append(ans) | ||
self.cache_hook.add_partial("generate_until", (context, gen_kwargs), ans) | ||
pbar.update(1) | ||
# reorder this group of results back to original unsorted form | ||
res = re_ords.get_original(res) | ||
|
||
pbar.close() | ||
return res |