-
Notifications
You must be signed in to change notification settings - Fork 182
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #162 from baichuanzhou/main
Add model Mantis to the LMMs-Eval supported model list
- Loading branch information
Showing
3 changed files
with
312 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,311 @@ | ||
import torch | ||
|
||
torch.backends.cuda.matmul.allow_tf32 = True | ||
|
||
|
||
import copy | ||
from tqdm import tqdm | ||
from datetime import timedelta | ||
|
||
from lmms_eval import utils | ||
from lmms_eval.api.instance import Instance | ||
from lmms_eval.api.model import lmms | ||
from lmms_eval.api.registry import register_model | ||
from lmms_eval.utils import stop_sequences_criteria | ||
|
||
from accelerate import Accelerator, DistributedType, InitProcessGroupKwargs | ||
from accelerate.state import AcceleratorState | ||
from typing import List, Optional, Union, Tuple | ||
from packaging import version | ||
import warnings | ||
|
||
from loguru import logger as eval_logger | ||
|
||
warnings.filterwarnings("ignore") | ||
|
||
try: | ||
from mantis.models.mllava import LlavaForConditionalGeneration, MLlavaProcessor | ||
from mantis.models.mfuyu import MFuyuForCausalLM, MFuyuProcessor | ||
from mantis.models.conversation import conv_mllava_v1 as default_conv, conv_templates | ||
|
||
except Exception as e: | ||
eval_logger.debug("Mantis is not installed. Please install Mantis to use this model.\nError: %s" % e) | ||
|
||
try: | ||
from transformers import AutoModelForVision2Seq, AutoProcessor | ||
except Exception as e: | ||
eval_logger.debug("Upgrade transformers to use Mantis's idefics model.\nError: %s" % e) | ||
|
||
# inference implementation for attention, can be "sdpa", "eager", "flash_attention_2". Seems FA2 is not effective during inference: https://discuss.huggingface.co/t/flash-attention-has-no-effect-on-inference/73453/5 | ||
# if is_flash_attn_2_available: | ||
# best_fit_attn_implementation = "flash_attention_2" # flash_attn has a bug that says: ERROR Error query and key must have the same dtype in generating | ||
|
||
try: | ||
import flash_attn | ||
|
||
best_fit_attn_implementation = "flash_attention_2" | ||
except ImportError: | ||
best_fit_attn_implementation = "eager" | ||
|
||
DEFAULT_IMAGE_TOKEN = "<image>" | ||
|
||
@register_model("mantis") | ||
class Mantis(lmms): | ||
""" | ||
Mantis Model | ||
This implementation is adpated from the Llava model from llava.py and the Idefics model from idefics.py | ||
""" | ||
|
||
def __init__( | ||
self, | ||
pretrained: str = "TIGER-Lab/Mantis-8B-siglip-llama3", | ||
truncation: Optional[bool] = True, | ||
device: Optional[str] = "cuda:0", | ||
dtype: Optional[Union[str, torch.dtype]] = "float16", | ||
batch_size: Optional[Union[int, str]] = 1, | ||
attn_implementation=best_fit_attn_implementation, | ||
device_map="cuda:0", | ||
use_cache=True, | ||
truncate_context=False, # whether to truncate the context in generation, set it False for LLaVA-1.6 | ||
**kwargs, | ||
) -> None: | ||
super().__init__() | ||
# Do not use kwargs for now | ||
assert kwargs == {}, f"Unexpected kwargs: {kwargs}" | ||
|
||
accelerator_kwargs = InitProcessGroupKwargs(timeout=timedelta(weeks=52)) | ||
accelerator = Accelerator(kwargs_handlers=[accelerator_kwargs]) | ||
if accelerator.num_processes > 1: | ||
self._device = torch.device(f"cuda:{accelerator.local_process_index}") | ||
self.device_map = f"cuda:{accelerator.local_process_index}" | ||
elif accelerator.num_processes == 1 and device_map == "auto": | ||
self._device = torch.device(device) | ||
self.device_map = device_map | ||
else: | ||
self._device = torch.device(f"cuda:{accelerator.local_process_index}") | ||
self.device_map = f"cuda:{accelerator.local_process_index}" | ||
|
||
self._is_idefics = "idefics" in pretrained.lower() | ||
if isinstance(dtype, str) and dtype != "auto": | ||
dtype = getattr(torch, dtype) | ||
|
||
# Here we load the "non-idefics" Mantis model. | ||
if not self._is_idefics: | ||
if 'fuyu' in pretrained.lower(): | ||
self._processor = MFuyuProcessor.from_pretrained(pretrained) | ||
self._model = MFuyuForCausalLM.from_pretrained(pretrained, device_map=self.device_map, attn_implementation=attn_implementation, torch_dtype=dtype) | ||
else: | ||
self._processor = MLlavaProcessor.from_pretrained(pretrained) | ||
self._model = LlavaForConditionalGeneration.from_pretrained(pretrained, device_map=self.device_map, attn_implementation=attn_implementation, torch_dtype=dtype) | ||
|
||
else: | ||
self._processor = AutoProcessor.from_pretrained(pretrained) | ||
self._model = AutoModelForVision2Seq.from_pretrained(pretrained, device_map=self.device_map, torch_dtype=dtype) | ||
eval_logger.info(f"Using {type(self._model)} to instantiate the Mantis model.") | ||
|
||
self._tokenizer = self._processor.tokenizer | ||
|
||
self._config = self._model.config | ||
self.model.eval() | ||
self.model.tie_weights() | ||
self.truncation = truncation | ||
self.batch_size_per_gpu = int(batch_size) | ||
self.use_cache = use_cache | ||
self.truncate_context = truncate_context | ||
|
||
if accelerator.num_processes > 1: | ||
assert accelerator.distributed_type in [DistributedType.FSDP, DistributedType.MULTI_GPU, DistributedType.DEEPSPEED], "Unsupported distributed type provided. Only DDP and FSDP are supported." | ||
# If you want to use DistributedType.DEEPSPEED, you have to run accelerate config before using the model | ||
# Also, you have to select zero stage 0 (equivalent to DDP) in order to make the prepare model works | ||
# I tried to set different parameters in the kwargs to let default zero 2 stage works, but it didn't work. | ||
if accelerator.distributed_type == DistributedType.DEEPSPEED: | ||
kwargs = { | ||
"train_micro_batch_size_per_gpu": self.batch_size_per_gpu, | ||
"train_batch_size": self.batch_size_per_gpu * accelerator.num_processes, | ||
} | ||
AcceleratorState().deepspeed_plugin.deepspeed_config_process(must_match=True, **kwargs) | ||
eval_logger.info("Detected that you are using DistributedType.DEEPSPEED. Make sure you run `accelerate config` and set zero stage to 0") | ||
|
||
if accelerator.distributed_type == DistributedType.FSDP or accelerator.distributed_type == DistributedType.DEEPSPEED: | ||
self._model = accelerator.prepare(self.model) | ||
else: | ||
self._model = accelerator.prepare_model(self.model, evaluation_mode=True) | ||
self.accelerator = accelerator | ||
if self.accelerator.is_local_main_process: | ||
eval_logger.info(f"Using {accelerator.num_processes} devices with data parallelism") | ||
self._rank = self.accelerator.local_process_index | ||
self._world_size = self.accelerator.num_processes | ||
elif accelerator.num_processes == 1 and device_map == "auto": | ||
eval_logger.info(f"Using {accelerator.num_processes} devices with tensor parallelism") | ||
self._rank = 0 | ||
self._word_size = 1 | ||
else: | ||
eval_logger.info(f"Using single device: {self._device}") | ||
self.model.to(self._device) | ||
self._rank = 0 | ||
self._world_size = 1 | ||
|
||
@property | ||
def config(self): | ||
# return the associated transformers.AutoConfig for the given pretrained model. | ||
return self._config | ||
|
||
@property | ||
def tokenizer(self): | ||
return self._tokenizer | ||
|
||
@property | ||
def model(self): | ||
# returns the model, unwrapping it if using Accelerate | ||
if hasattr(self, "accelerator"): | ||
return self.accelerator.unwrap_model(self._model) | ||
else: | ||
return self._model | ||
|
||
@property | ||
def eot_token_id(self): | ||
# we use EOT because end of *text* is more accurate for what we're doing than end of *sentence* | ||
return self.tokenizer.eos_token_id | ||
|
||
@property | ||
def max_length(self): | ||
return self._max_length | ||
|
||
def pad_sequence(self, input_ids, batch_first, padding_value): | ||
if self.tokenizer.padding_side == "left": | ||
input_ids = [torch.flip(_input_ids, [0]) for _input_ids in input_ids] | ||
input_ids = torch.nn.utils.rnn.pad_sequence(input_ids, batch_first=batch_first, padding_value=padding_value) | ||
if self.tokenizer.padding_side == "left": | ||
input_ids = torch.flip(input_ids, [1]) | ||
return input_ids | ||
|
||
@property | ||
def batch_size(self): | ||
return self.batch_size_per_gpu | ||
|
||
@property | ||
def device(self): | ||
return self._device | ||
|
||
@property | ||
def rank(self): | ||
return self._rank | ||
|
||
@property | ||
def world_size(self): | ||
return self._world_size | ||
|
||
def tok_encode(self, string: str, left_truncate_len=None, add_special_tokens=None) -> List[int]: | ||
""" """ | ||
add_special_tokens = False if add_special_tokens is None else add_special_tokens | ||
encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens) | ||
# left-truncate the encoded context to be at most `left_truncate_len` tokens long | ||
if left_truncate_len: | ||
encoding = encoding[-left_truncate_len:] | ||
return encoding | ||
|
||
def tok_decode(self, tokens): | ||
try: | ||
return self.tokenizer.decode(tokens) | ||
except: | ||
return self.tokenizer.decode([tokens]) | ||
|
||
def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]: | ||
raise NotImplementedError | ||
|
||
def flatten(self, input): | ||
new_list = [] | ||
for i in input: | ||
for j in i: | ||
new_list.append(j) | ||
return new_list | ||
|
||
def generate_until(self, requests: List[Instance]) -> List[str]: | ||
res = [] | ||
|
||
def _collate(x): | ||
# the negative sign on len(toks) sorts descending - this has a few advantages: | ||
# - time estimates will always be over not underestimates, which is more useful for planning | ||
# - to know the size of a batch when going through the list, you know the first one is always the batch | ||
# padded context length. this is useful to simplify the batching logic and more importantly to make | ||
# automatic adaptive batches much much easier to implement | ||
# - any OOMs will happen right away rather than near the end | ||
toks = self.tok_encode(x[0]) | ||
return -len(toks), x[0] | ||
|
||
# we group requests by their generation_kwargs, | ||
# so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling | ||
# in the same batch. | ||
re_ords = utils.Collator([reg.args for reg in requests], _collate, grouping=True) | ||
chunks = re_ords.get_batched(n=self.batch_size, batch_fn=None) | ||
num_iters = len(requests) // self.batch_size if len(requests) % self.batch_size == 0 else len(requests) // self.batch_size + 1 | ||
pbar = tqdm(total=num_iters, disable=(self.rank != 0), desc="Model Responding") | ||
for chunk in chunks: | ||
contexts, all_gen_kwargs, doc_to_visuals, doc_id, tasks, splits = zip(*chunk) | ||
visuals = [doc_to_visual(self.task_dict[task][split][ids]) for ids, task, split, doc_to_visual in zip(doc_id, tasks, splits, doc_to_visuals)] | ||
|
||
# we assume all gen kwargs in the batch are the same | ||
# this is safe to assume because the `grouper` object ensures it. | ||
gen_kwargs = all_gen_kwargs[0] | ||
|
||
until = gen_kwargs.pop("until", None) | ||
image_aspect_ratio = gen_kwargs.pop("image_aspect_ratio", None) | ||
|
||
if "max_new_tokens" not in gen_kwargs: | ||
gen_kwargs["max_new_tokens"] = 1024 | ||
if "temperature" not in gen_kwargs: | ||
gen_kwargs["temperature"] = 0 | ||
|
||
# prompts_input = contexts[0] | ||
|
||
prompts = [] | ||
for visual, context in zip(visuals, contexts): | ||
if self._is_idefics: | ||
# Follow the idefics implementation: | ||
content = [] | ||
if DEFAULT_IMAGE_TOKEN not in context: | ||
for _ in visual: | ||
content.append({"type": "image"}) | ||
content.append({"type": "text", "text": context}) | ||
message = [{"role": "user", "content": content}] | ||
prompt = self._processor.apply_chat_template(message, add_generation_prompt=True) | ||
prompts.append(prompt) | ||
else: | ||
# We follow the Mantis code base: https://github.com/TIGER-AI-Lab/Mantis/blob/main/mantis/models/mllava/utils.py#L33 to make sure they are consistent | ||
# Users don't need to define chat template as it is done here | ||
if "llama-3" in self._model.language_model.name_or_path.lower(): | ||
conv = conv_templates['llama_3'] | ||
terminators = [ | ||
self._processor.tokenizer.eos_token_id, | ||
self._processor.tokenizer.convert_tokens_to_ids("<|eot_id|>") | ||
] | ||
else: | ||
conv = default_conv | ||
terminators = None | ||
|
||
gen_kwargs["eos_token_id"] = terminators | ||
|
||
conv = conv.copy() | ||
conv.append_message(conv.roles[0], context) | ||
conv.append_message(conv.roles[1], "") | ||
prompt = conv.get_prompt() | ||
prompts.append(prompt) | ||
inputs = self._processor(images=visuals, text=prompts, return_tensors="pt", truncation=True) | ||
if "image_patches" in inputs.keys(): | ||
inputs["image_patches"] = inputs["image_patches"][0] # FIXME: Fuyu model would return a list instead of a pytorch tensor. This weird behavior needs fixing. | ||
inputs = {k: v.to(self.device) for k, v in inputs.items()} | ||
|
||
output_ids = self.model.generate(**inputs, **gen_kwargs) | ||
for output_id, input_id in zip(output_ids, inputs["input_ids"]): | ||
generated_id = output_id[len(input_id) :] | ||
generated_text = self.tokenizer.decode(generated_id, skip_special_tokens=True) | ||
|
||
res.append(generated_text) | ||
|
||
# self.cache_hook.add_partial("generate_until", (context, gen_kwargs), text_outputs) | ||
pbar.update(1) | ||
# reorder this group of results back to original unsorted form | ||
res = re_ords.get_original(res) | ||
|
||
pbar.close() | ||
return res |
Binary file not shown.