Skip to content

Commit

Permalink
Merge pull request #1 from EvolvingLMMs-Lab/pufanyi/pip
Browse files Browse the repository at this point in the history
  • Loading branch information
Luodian authored Mar 8, 2024
2 parents 191ed64 + 1a01ebd commit 6670a6b
Show file tree
Hide file tree
Showing 13 changed files with 35 additions and 46 deletions.
1 change: 0 additions & 1 deletion lmms_eval/api/metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -166,7 +166,6 @@ def perplexity_fn(items): # This is a passthrough function
return items



def levenshtein_distance(s1, s2):
if len(s1) > len(s2):
s1, s2 = s2, s1
Expand Down
1 change: 0 additions & 1 deletion lmms_eval/api/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,6 @@ def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
"""
pass


# TODO: Add an optional max length
@abc.abstractmethod
def generate_until(self, requests) -> List[str]:
Expand Down
4 changes: 3 additions & 1 deletion lmms_eval/api/samplers.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,9 @@ def get_context(self, doc, num_fewshot):
+ (
str(self.doc_to_target(doc)[0])
if type(self.doc_to_target(doc)) is list
else self.doc_to_target(doc) if (self.config.doc_to_choice is None or type(self.doc_to_target(doc)) is str) else str(self.doc_to_choice(doc)[self.doc_to_target(doc)])
else self.doc_to_target(doc)
if (self.config.doc_to_choice is None or type(self.doc_to_target(doc)) is str)
else str(self.doc_to_choice(doc)[self.doc_to_target(doc)])
)
for doc in selected_docs
]
Expand Down
2 changes: 1 addition & 1 deletion lmms_eval/api/task.py
Original file line number Diff line number Diff line change
Expand Up @@ -687,7 +687,7 @@ def download(self, dataset_kwargs=None) -> None:
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS,
**dataset_kwargs if dataset_kwargs is not None else {},
)
self.dataset_no_image = datasets.load_dataset(
self.dataset_no_image = datasets.load_dataset(
path=self.DATASET_PATH,
name=self.DATASET_NAME,
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS,
Expand Down
32 changes: 19 additions & 13 deletions lmms_eval/models/__init__.py
Original file line number Diff line number Diff line change
@@ -1,15 +1,21 @@
import os

try:
# enabling faster model download
from .llava import Llava
from .qwen_vl import Qwen_VL
from .fuyu import Fuyu
from .gpt4v import GPT4V
from .instructblip import InstructBLIP
from .minicpm_v import MiniCPM_V
import hf_transfer

os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
except ImportError:
pass
AVAILABLE_MODELS = {
"llava": "Llava",
"qwen_vl": "Qwen_VL",
"fuyu": "Fuyu",
"gpt4v": "GPT4V",
"instructblip": "InstructBLIP",
"minicpm_v": "MiniCPM_V",
}

for model_name, model_class in AVAILABLE_MODELS.items():
try:
exec(f"from .{model_name} import {model_class}")
except ImportError:
pass


import hf_transfer

os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
2 changes: 0 additions & 2 deletions lmms_eval/models/fuyu.py
Original file line number Diff line number Diff line change
Expand Up @@ -253,8 +253,6 @@ def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
pbar.close()
return res



def tok_encode(self, string: str, left_truncate_len=None, add_special_tokens=None) -> List[int]:
""" """
add_special_tokens = False if add_special_tokens is None else add_special_tokens
Expand Down
2 changes: 0 additions & 2 deletions lmms_eval/models/gpt4v.py
Original file line number Diff line number Diff line change
Expand Up @@ -127,5 +127,3 @@ def generate_until(self, requests) -> List[str]:
def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
# TODO
assert False, "GPT4V not support"


10 changes: 3 additions & 7 deletions lmms_eval/models/instructblip.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,26 +44,22 @@ def __init__(
self._device = torch.device(f"cuda:{accelerator.local_process_index}")
else:
self._device = device
self._model = InstructBlipForConditionalGeneration.from_pretrained(pretrained,device_map=self._device)
self._model = InstructBlipForConditionalGeneration.from_pretrained(pretrained, device_map=self._device)
self._image_processor = InstructBlipProcessor.from_pretrained(pretrained)
self._tokenizer = self._image_processor.tokenizer
self._config = self._model.config
self.model.eval()
self.model.tie_weights()
self.batch_size_per_gpu = int(batch_size)
if accelerator.num_processes > 1:
assert accelerator.distributed_type in [
DistributedType.FSDP,
DistributedType.MULTI_GPU,
DistributedType.DEEPSPEED
], "Unsupported distributed type provided. Only DDP and FSDP are supported."
assert accelerator.distributed_type in [DistributedType.FSDP, DistributedType.MULTI_GPU, DistributedType.DEEPSPEED], "Unsupported distributed type provided. Only DDP and FSDP are supported."
# If you want to use DistributedType.DEEPSPEED, you have to run accelerate config before using the model
# Also, you have to select zero stage 0 (equivalent to DDP) in order to make the prepare model works
# I tried to set different parameters in the kwargs to let default zero 2 stage works, but it didn't work.
if accelerator.distributed_type == DistributedType.DEEPSPEED:
kwargs = {
"train_micro_batch_size_per_gpu": self.batch_size_per_gpu,
"train_batch_size" : self.batch_size_per_gpu * accelerator.num_processes,
"train_batch_size": self.batch_size_per_gpu * accelerator.num_processes,
}
AcceleratorState().deepspeed_plugin.deepspeed_config_process(must_match=True, **kwargs)
eval_logger.info("Detected that you are using DistributedType.DEEPSPEED. Make sure you run `accelerate config` and set zero stage to 0")
Expand Down
8 changes: 2 additions & 6 deletions lmms_eval/models/llava.py
Original file line number Diff line number Diff line change
Expand Up @@ -78,18 +78,14 @@ def __init__(
self.truncate_context = truncate_context
# assert self.batch_size_per_gpu == 1, "Llava currently does not support batched generation. See https://github.com/haotian-liu/LLaVA/issues/754. HF Llava also has this issue."
if accelerator.num_processes > 1:
assert accelerator.distributed_type in [
DistributedType.FSDP,
DistributedType.MULTI_GPU,
DistributedType.DEEPSPEED
], "Unsupported distributed type provided. Only DDP and FSDP are supported."
assert accelerator.distributed_type in [DistributedType.FSDP, DistributedType.MULTI_GPU, DistributedType.DEEPSPEED], "Unsupported distributed type provided. Only DDP and FSDP are supported."
# If you want to use DistributedType.DEEPSPEED, you have to run accelerate config before using the model
# Also, you have to select zero stage 0 (equivalent to DDP) in order to make the prepare model works
# I tried to set different parameters in the kwargs to let default zero 2 stage works, but it didn't work.
if accelerator.distributed_type == DistributedType.DEEPSPEED:
kwargs = {
"train_micro_batch_size_per_gpu": self.batch_size_per_gpu,
"train_batch_size" : self.batch_size_per_gpu * accelerator.num_processes,
"train_batch_size": self.batch_size_per_gpu * accelerator.num_processes,
}
AcceleratorState().deepspeed_plugin.deepspeed_config_process(must_match=True, **kwargs)
eval_logger.info("Detected that you are using DistributedType.DEEPSPEED. Make sure you run `accelerate config` and set zero stage to 0")
Expand Down
10 changes: 3 additions & 7 deletions lmms_eval/models/minicpm_v.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,18 +49,14 @@ def __init__(
self.model.tie_weights()
self.batch_size_per_gpu = int(batch_size)
if accelerator.num_processes > 1:
assert accelerator.distributed_type in [
DistributedType.FSDP,
DistributedType.MULTI_GPU,
DistributedType.DEEPSPEED
], "Unsupported distributed type provided. Only DDP and FSDP are supported."
assert accelerator.distributed_type in [DistributedType.FSDP, DistributedType.MULTI_GPU, DistributedType.DEEPSPEED], "Unsupported distributed type provided. Only DDP and FSDP are supported."
# If you want to use DistributedType.DEEPSPEED, you have to run accelerate config before using the model
# Also, you have to select zero stage 0 (equivalent to DDP) in order to make the prepare model works
# I tried to set different parameters in the kwargs to let default zero 2 stage works, but it didn't work.
if accelerator.distributed_type == DistributedType.DEEPSPEED:
kwargs = {
"train_micro_batch_size_per_gpu": self.batch_size_per_gpu,
"train_batch_size" : self.batch_size_per_gpu * accelerator.num_processes,
"train_batch_size": self.batch_size_per_gpu * accelerator.num_processes,
}
AcceleratorState().deepspeed_plugin.deepspeed_config_process(must_match=True, **kwargs)
eval_logger.info("Detected that you are using DistributedType.DEEPSPEED. Make sure you run `accelerate config` and set zero stage to 0")
Expand Down Expand Up @@ -189,7 +185,7 @@ def _collate(x):
if "<image>" in context:
# minicpm does not expect the <image> tag
context = context.replace("<image>", "")
msgs = [{'role': 'user', 'content': context}]
msgs = [{"role": "user", "content": context}]

gen_kwargs["image_sizes"] = [visuals[idx].size for idx in range(len(visuals))]
if "max_new_tokens" not in gen_kwargs:
Expand Down
2 changes: 0 additions & 2 deletions lmms_eval/models/qwen_vl.py
Original file line number Diff line number Diff line change
Expand Up @@ -174,8 +174,6 @@ def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
pbar.close()
return res



def flatten(self, input):
new_list = []
for i in input:
Expand Down
2 changes: 1 addition & 1 deletion lmms_eval/tasks/cmmmu/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -122,7 +122,7 @@ def cmmmu_process_test_results_for_submission(doc, results):

def cmmmu_test_aggregate_results_for_submission(results, args):
file = generate_submission_file("cmmmu_test_for_submission.jsonl", args)
with open(file, "w", encoding='utf8') as f:
with open(file, "w", encoding="utf8") as f:
for result in results:
json.dump(result, f, ensure_ascii=False)
f.write("\n")
Expand Down
5 changes: 3 additions & 2 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ build-backend = "setuptools.build_meta"
name = "lmms_eval"
version = "0.1.0"
authors = [
{ name = "LMMMs-Lab Evaluation Team", email = "lmms_eval@gmail.com" },
{ name = "LMMMs-Lab Evaluation Team", email = "lmms_eval@outlook.com" },
]
description = "A framework for evaluating large multi-modality language models"
readme = "README.md"
Expand Down Expand Up @@ -53,6 +53,7 @@ dependencies = [
"transformers-stream-generator",
"tiktoken",
"pre-commit",
"pydantic",
]

[tool.setuptools.packages.find]
Expand All @@ -66,5 +67,5 @@ lmms-eval = "lmms_eval.__main__:cli_evaluate"
lmms_eval = "lmms_eval.__main__:cli_evaluate"

[project.urls]
Homepage = "https://github.com/EvolvingLMMs-Lab/lmms-eval"
Homepage = "https://lmms-lab.github.io/lmms-eval-blog/"
Repository = "https://github.com/EvolvingLMMs-Lab/lmms-eval"

0 comments on commit 6670a6b

Please sign in to comment.