Skip to content

Commit

Permalink
Merge pull request #252 from EvolvingLMMs-Lab/dev/fix_raw_scores
Browse files Browse the repository at this point in the history
Refactor wild_vision_aggregation_raw_scores to calculate average score
  • Loading branch information
Luodian authored Sep 14, 2024
2 parents bfff5ab + fa2e685 commit b993ef9
Show file tree
Hide file tree
Showing 2 changed files with 311 additions and 1 deletion.
310 changes: 310 additions & 0 deletions lmms_eval/models/cambrian.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,310 @@
# code is migrated from https://github.com/kangreen0210/LIME-M/blob/main/lmms_eval/models/cambrian.py
import os
import uuid
import warnings
from typing import List, Optional, Tuple, Union

import torch
from accelerate import Accelerator, DistributedType
from PIL import Image
from tqdm import tqdm
from transformers import PreTrainedTokenizer

from lmms_eval import utils
from lmms_eval.api.instance import Instance
from lmms_eval.api.model import lmms
from lmms_eval.api.registry import register_model

warnings.simplefilter("ignore", category=DeprecationWarning)
warnings.filterwarnings("ignore")

from loguru import logger as eval_logger

try:
from cambrian.conversation import conv_templates
from cambrian.mm_utils import (
get_model_name_from_path,
process_images,
tokenizer_image_token,
)
from cambrian.model.builder import load_pretrained_model
except ImportError:
eval_logger.error("Cambrian is not installed. Please install it by running `pip install cambrian`.")

# Model Constants
IMAGE_TOKEN_INDEX = -200
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"


def process(image, question, tokenizer, image_processor, model_config, conv_mode):
qs = question

if model_config.mm_use_im_start_end:
qs = f"{DEFAULT_IM_START_TOKEN}{DEFAULT_IMAGE_TOKEN}{DEFAULT_IM_END_TOKEN}\n{qs}"
else:
qs = f"{DEFAULT_IMAGE_TOKEN}\n{qs}"

conv = conv_templates[conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()

image_size = [image.size]
image_tensor = process_images([image], image_processor, model_config)

input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).cuda()

return input_ids, image_tensor, image_size, prompt


def make_context(
tokenizer: PreTrainedTokenizer,
query: str,
history: List[Tuple[str, str]] = None,
system: str = "",
max_window_size: int = 6144,
chat_format: str = "chatml",
):
if history is None:
history = []

if chat_format == "chatml":
im_start, im_end = "<|im_start|>", "<|im_end|>"
im_start_tokens = [tokenizer.im_start_id]
im_end_tokens = [tokenizer.im_end_id]
nl_tokens = tokenizer.encode("\n")

def _tokenize_str(role, content):
return f"{role}\n{content}", tokenizer.encode(role, allowed_special=set(tokenizer.IMAGE_ST)) + nl_tokens + tokenizer.encode(content, allowed_special=set(tokenizer.IMAGE_ST))

system_text, system_tokens_part = _tokenize_str("system", system)
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens

raw_text = ""
context_tokens = []

for turn_query, turn_response in reversed(history):
query_text, query_tokens_part = _tokenize_str("user", turn_query)
query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
if turn_response is not None:
response_text, response_tokens_part = _tokenize_str("assistant", turn_response)
response_tokens = im_start_tokens + response_tokens_part + im_end_tokens

next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
prev_chat = f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
else:
next_context_tokens = nl_tokens + query_tokens + nl_tokens
prev_chat = f"\n{im_start}{query_text}{im_end}\n"

current_context_size = len(system_tokens) + len(next_context_tokens) + len(context_tokens)
if current_context_size < max_window_size:
context_tokens = next_context_tokens + context_tokens
raw_text = prev_chat + raw_text
else:
break

context_tokens = system_tokens + context_tokens
raw_text = f"{im_start}{system_text}{im_end}" + raw_text
context_tokens += nl_tokens + im_start_tokens + _tokenize_str("user", query)[1] + im_end_tokens + nl_tokens + im_start_tokens + tokenizer.encode("assistant") + nl_tokens
raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"

elif chat_format == "raw":
raw_text = query
context_tokens = tokenizer.encode(raw_text)
else:
raise NotImplementedError(f"Unknown chat format {chat_format!r}")

return raw_text, context_tokens


@register_model("cambrian")
class Cambrian(lmms):
def __init__(
self,
pretrained: str = "nyu-visionx/cambrian-8b",
device: Optional[str] = "cuda",
device_map="auto",
batch_size: Optional[Union[int, str]] = 1,
trust_remote_code: Optional[bool] = True,
use_cache=True,
**kwargs,
) -> None:
super().__init__()
assert not kwargs, f"Unexpected kwargs: {kwargs}"

accelerator = Accelerator()
self._device = torch.device(f"cuda:{accelerator.local_process_index}") if accelerator.num_processes > 1 else device

self.model_name = get_model_name_from_path(pretrained)
tokenizer, model, self.image_processor, context_len = load_pretrained_model(pretrained, None, self.model_name, device_map=self._device)

self.conv_mode = {"cambrian-8b": "llama_3", "cambrian-13b": "vicuna_v1", "cambrian-34b": "chatml_direct"}.get(self.model_name)

if not self.conv_mode:
raise ValueError(f"Unsupported model: {self.model_name}")

self._model = model
self._tokenizer = tokenizer
self._model.eval()
self.batch_size_per_gpu = int(batch_size)
self.use_cache = use_cache
self._rank = 0
self._world_size = 1

if accelerator.num_processes > 1:
assert accelerator.distributed_type in [DistributedType.FSDP, DistributedType.MULTI_GPU], "Unsupported distributed type. Only DDP and FSDP are supported."
self._model = accelerator.prepare(self.model) if accelerator.distributed_type == DistributedType.FSDP else accelerator.prepare_model(self.model, evaluation_mode=True)
self.accelerator = accelerator
if self.accelerator.is_local_main_process:
eval_logger.info(f"Using {accelerator.num_processes} devices with data parallelism")
self._rank = self.accelerator.local_process_index
self._world_size = self.accelerator.num_processes
else:
self.model.to(self._device)

self.accelerator = accelerator

@property
def model(self):
return self.accelerator.unwrap_model(self._model) if hasattr(self, "accelerator") else self._model

@property
def eot_token_id(self):
return self.tokenizer.eos_token_id

def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
res = []
pbar = tqdm(total=len(requests), disable=(self.rank != 0), desc="Model Responding")

for contexts, doc_to_target, doc_to_visual, doc_id, task, split in [reg.args for reg in requests]:
continuation = doc_to_target if isinstance(doc_to_target, str) else doc_to_target(self.task_dict[task][split][doc_id])
visuals = self.flatten([doc_to_visual(self.task_dict[task][split][doc_id])])

query = []
visual_paths = []
for visual in visuals:
name = uuid.uuid4().hex.upper()[0:6]
visual_path = f"/tmp/{name}.png"
visual.save(visual_path)
visual_paths.append(visual_path)
query.append({"image": visual_path})

context_query = query.copy()
context_query.append({"text": contexts})
query.append({"text": contexts + continuation})

context_query = self.tokenizer.from_list_format(context_query)
query = self.tokenizer.from_list_format(query)

_, context_tokens = make_context(
self.tokenizer, context_query, history=None, system="You are a helpful assistant", max_window_size=self.model.generation_config.max_window_size, chat_format=self.model.generation_config.chat_format
)
context_tokens = torch.tensor([context_tokens])

_, continuation_tokens = make_context(self.tokenizer, query, history=None, system="You are a helpful assistant", max_window_size=self.model.generation_config.max_window_size, chat_format=self.model.generation_config.chat_format)
continuation_tokens = torch.tensor([continuation_tokens]).to(self.model.device)
attn_mask = torch.ones_like(continuation_tokens).to(self.model.device)
labels = continuation_tokens.clone().to(self.model.device)
labels[:, : context_tokens.shape[1]] = -100

with torch.inference_mode():
outputs = self.model(input_ids=continuation_tokens, labels=labels, attention_mask=attn_mask)

loss = outputs.loss
logits = outputs["logits"]
greedy_tokens = logits.argmax(dim=-1)
cont_toks = continuation_tokens[:, context_tokens.shape[1] :]
greedy_tokens = greedy_tokens[:, context_tokens.shape[1] : continuation_tokens.shape[1]]
max_equal = (greedy_tokens == cont_toks).all()
res.append((float(loss.item()), bool(max_equal)))
pbar.update(1)

pbar.close()
return res

@staticmethod
def flatten(input_list):
return [item for sublist in input_list for item in sublist]

def generate_until(self, requests: List[Instance]) -> List[str]:
res = []

def _collate(x):
toks = self.tokenizer.encode(x[0])
return -len(toks), x[0]

pbar = tqdm(total=len(requests), disable=(self.rank != 0), desc="Model Responding")
re_ords = utils.Collator([reg.args for reg in requests], _collate, grouping=True)
chunks = re_ords.get_batched(n=self.batch_size, batch_fn=None)

for chunk in chunks:
contexts, all_gen_kwargs, doc_to_visual, doc_id, task, split = zip(*chunk)
task = task[0]
split = split[0]
visuals = self.flatten([doc_to_visual[0](self.task_dict[task][split][ids]) for ids in doc_id])

visual_paths = []
for visual in visuals:
name = uuid.uuid4().hex.upper()[0:6]
visual_path = f"/xpfs/public/gezhang/zk/lmms-eval/lmms_eval/tmp/{name}.png"
visual.save(visual_path)
visual_paths.append(visual_path)

gen_kwargs = all_gen_kwargs[0]
until = [self.tokenizer.decode(self.eot_token_id)]

if "until" in gen_kwargs:
until = gen_kwargs.pop("until")
if isinstance(until, str):
until = [until]
elif not isinstance(until, list):
raise ValueError(f"Expected `gen_kwargs['until']` to be of type Union[str,list] but got {type(until)}")

gen_kwargs.setdefault("image_sizes", [visuals[0].size] if visuals else None)
gen_kwargs.setdefault("max_new_tokens", 1024)
gen_kwargs.setdefault("temperature", 0)
gen_kwargs.setdefault("top_p", None)
gen_kwargs.setdefault("num_beams", 1)

until.append("<|eot_id|>")

image = Image.open(visual_paths[0]).convert("RGB")
question = contexts[0]

input_ids, image_tensor, image_sizes, prompt = process(image, question, self.tokenizer, self.image_processor, self.model.config, self.conv_mode)
input_ids = input_ids.to(device=self.model.device, non_blocking=True)

with torch.inference_mode():
output_ids = self.model.generate(
input_ids,
images=image_tensor,
image_sizes=image_sizes,
do_sample=gen_kwargs["temperature"] > 0,
temperature=gen_kwargs["temperature"],
num_beams=gen_kwargs["num_beams"],
max_new_tokens=gen_kwargs["max_new_tokens"],
use_cache=True,
)

text_outputs = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()

for term in until:
if term:
text_outputs = text_outputs.split(term)[0]

print(text_outputs)
res.append(text_outputs)

for visual_path in visual_paths:
try:
os.remove(visual_path)
except OSError:
pass

pbar.update(1)

res = re_ords.get_original(res)
pbar.close()
return res
2 changes: 1 addition & 1 deletion lmms_eval/tasks/wild_vision_bench/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -305,7 +305,7 @@ def wild_vision_aggregation_raw_scores(results):
total_score = 0
for result in results:
total_score += result["final_score"]
return total_score
return total_score / len(results)


def wild_vision_aggregation_elo_scores(results):
Expand Down

0 comments on commit b993ef9

Please sign in to comment.