forked from XiangLi1999/Diffusion-LM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_run.py
109 lines (83 loc) · 5.1 KB
/
train_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import sys
import os
import argparse
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='training args.')
parser.add_argument('--experiment', type=str, default='no-rep', help='no-rep=gpt2gen, no-zipfs, has-rep=regular, rm-window-rep')
parser.add_argument('--task', type=str, default='wp', help='wp, wikitext')
parser.add_argument('--rand_idx', type=str, default='no',
help='no or yes')
parser.add_argument('--pretrained_model', type=str, default='gpt2', help='')
parser.add_argument('--model_type', type=str, default='gpt2', help='')
parser.add_argument('--dataset_name', type=str, default='wikitext', help='')
parser.add_argument('--dataset_config_name', type=str, default='wikitext-103-raw-v1', help='')
parser.add_argument('--train_file', type=str, default='wikitext', help='')
parser.add_argument('--validation_file', type=str, default='wikitext', help='')
parser.add_argument('--dir_name', type=str, default=None, help='')
parser.add_argument('--notes', type=str, default=None, help='')
parser.add_argument('--block_size', type=int, default=100, help='')
# training parameters.
parser.add_argument('--seed', type=int, default=101, help='') # old is 42
parser.add_argument('--bsz', type=int, default=10, help='')
parser.add_argument('--epoch', type=int, default=5, help='')
parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help='')
parser.add_argument('--learning_rate', type=float, default=5e-05, help='')
parser.add_argument('--temperature', type=float, default=1., help='')
parser.add_argument('--weight_decay', type=float, default=0.0, help='')
parser.add_argument('--percent', type=float, default=1.0, help='')
parser.add_argument('--submit', type=str, default='no', help='')
parser.add_argument('--use_big', type=str, default='no', help='')
parser.add_argument('--app', type=str, default='', help='')
args = parser.parse_args()
folder_name = "classifier_models"
if not os.path.isdir(folder_name):
os.mkdir(folder_name)
if args.experiment == 'e2e-tgt' or args.experiment == 'e2e-tgt-pos' or args.experiment == 'e2e-tgt-tree' or \
args.experiment == 'e2e-tgt-gen-tree' or args.experiment == 'e2e-tgt-gen-pos' or args.experiment == 'e2e-back-gen' \
or args.experiment == 'e2e-tgt-gen-length' or args.experiment == 'e2e-tgt-gen-spans' \
or args.experiment == 'e2e-back' \
or args.experiment == 'simple-wiki' or args.experiment == 'roc':
if args.dataset_name == 'none':
Model_FILE = args.experiment + \
'_e={}_b={}_m={}_{}_{}_{}'.format(args.epoch, args.bsz * args.gradient_accumulation_steps,
args.pretrained_model, os.path.basename(args.train_file), args.seed,
args.task)
Model_FILE = Model_FILE + f'_{args.notes}'
logging_dir = os.path.join(folder_name, 'runs', Model_FILE)
Model_FILE = os.path.join(folder_name, Model_FILE)
app = f" --train_file={args.train_file} --validation_file {args.validation_file} " \
f" --task {args.task}"
app += " " + args.app
else:
Model_FILE = args.experiment + \
'_e={}_b={}_m={}_{}_{}_{}'.format(args.epoch, args.bsz * args.gradient_accumulation_steps,
args.pretrained_model, args.dataset_config_name, args.seed, args.task)
Model_FILE = Model_FILE + f'_{args.notes}'
logging_dir = os.path.join(folder_name, 'runs', Model_FILE)
Model_FILE = os.path.join(folder_name, Model_FILE)
app = f" --dataset_name={args.dataset_name} " \
f"--dataset_config_name {args.dataset_config_name} --task {args.task}"
app += " " + args.app
COMMANDLINE = f"python transformers/examples/pytorch/language-modeling/run_clm.py \
--output_dir={Model_FILE} \
--model_name_or_path={args.pretrained_model} \
--tokenizer_name={args.pretrained_model} \
--per_device_train_batch_size {args.bsz} \
--per_device_eval_batch_size {args.bsz} \
--save_steps 50000 \
--num_train_epochs {args.epoch} \
--do_train --eval_steps 10000 --evaluation_strategy steps \
--do_eval --dataloader_num_workers 4 \
--save_total_limit 1 \
--overwrite_output_dir \
--logging_dir {logging_dir} \
--block_size {args.block_size} \
--disable_tqdm True --model_type {args.model_type} \
--gradient_accumulation_steps {args.gradient_accumulation_steps} " \
f"--experiment {args.experiment} --seed {args.seed}"
COMMANDLINE += app
with open(Model_FILE + '.sh', 'w') as f:
print(COMMANDLINE, file=f)
print(COMMANDLINE)
if args.submit == 'no':
os.system(COMMANDLINE) # textattack/roberta-base-ag-news # textattack/roberta-base-imdb