Skip to content

Ewanwong/Diffusion-LM

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Diffusion-LM Improves Controllable Text Generation

https://arxiv.org/pdf/2205.14217.pdf


Conda Setup:

conda install mpi4py
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
pip install -e improved-diffusion/ 
pip install -e transformers/
pip install spacy==3.2.4
pip install datasets==1.8.0 
pip install huggingface_hub==0.4.0 
pip install wandb

Train Diffusion-LM:

cd improved-diffusion; mkdir diffusion_models;

python scripts/run_train.py --diff_steps 2000 --model_arch transformer --lr 0.0001 --lr_anneal_steps 200000 --seed 102 --noise_schedule sqrt --in_channel 16 --modality e2e-tgt --submit no --padding_mode block --app "--predict_xstart True --training_mode e2e --vocab_size 821 --e2e_train ../datasets/e2e_data " --notes xstart_e2e

python scripts/run_train.py --diff_steps 2000 --model_arch transformer --lr 0.0001 --lr_anneal_steps 400000 --seed 101 --noise_schedule sqrt --in_channel 128 --modality roc --submit no --padding_mode pad --app "--predict_xstart True --training_mode e2e --vocab_size 11043 --roc_train ../datasets/ROCstory " --notes xstart_e2e --bsz 64


Decode Diffusion-LM:

mkdir generation_outputs

python scripts/batch_decode.py {path-to-diffusion-lm} -1.0 ema


Controllable Text Generation

First, train the classsifier used to guide the generation (e.g. a syntactic parser)

python train_run.py --experiment e2e-tgt-tree --app "--init_emb {path-to-diffusion-lm} --n_embd {16} --learned_emb yes " --pretrained_model bert-base-uncased --epoch 6 --bsz 10

Then, we can use the trained classifier to guide generation. (currently, need to update the classifier directory in scripts/infill.py. I will clean this up in the next release.)

python python scripts/infill.py --model_path {path-to-diffusion-lm} --eval_task_ 'control_tree' --use_ddim True --notes "tree_adagrad" --eta 1. --verbose pipe


For details of the methods and results, please refer to our paper.

@article{Li-2022-DiffusionLM,
  title={Diffusion-LM Improves Controllable Text Generation},
  author={Xiang Lisa Li and John Thickstun and Ishaan Gulrajani and Percy Liang and Tatsunori Hashimoto},
  journal={ArXiv},
  year={2022},
  volume={abs/2205.14217}
}

About

Diffusion-LM

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.8%
  • Jupyter Notebook 0.8%
  • Shell 0.2%
  • Cuda 0.2%
  • Dockerfile 0.0%
  • C++ 0.0%