forked from zqhZY/_rasa_chatbot
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
32 changed files
with
46,370 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
|
||
## install dependency | ||
|
||
#### python3 | ||
install or update to python 3 | ||
|
||
#### install chinese version of rasa nlu | ||
``` | ||
git clone https://github.com/crownpku/Rasa_NLU_Chi.git | ||
cd rasa_nlu | ||
pip install -r requirements.txt | ||
python setup.py install | ||
``` | ||
|
||
#### install sklearn and MITIE | ||
|
||
``` | ||
pip install -U scikit-learn sklearn-crfsuite | ||
pip install git+https://github.com/mit-nlp/MITIE.git | ||
``` | ||
|
||
#### install rasa_core | ||
|
||
``` | ||
pip install rasa_core | ||
``` |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,170 @@ | ||
# -*- coding: UTF-8 -*- | ||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
from __future__ import unicode_literals | ||
|
||
import argparse | ||
import logging | ||
import warnings | ||
|
||
from rasa_core.actions import Action | ||
from rasa_core.agent import Agent | ||
from rasa_core.channels.console import ConsoleInputChannel | ||
from rasa_core.events import SlotSet | ||
from rasa_core.interpreter import RasaNLUInterpreter | ||
from rasa_core.policies.keras_policy import KerasPolicy | ||
from rasa_core.policies.memoization import MemoizationPolicy | ||
|
||
logger = logging.getLogger(__name__) | ||
|
||
support_search = ["消费", "流量"] | ||
|
||
|
||
def extract_item(item): | ||
""" | ||
check if item supported, this func just for lack of train data. | ||
:param item: item in track, eg: "流量"、"查流量" | ||
:return: | ||
""" | ||
if item is None: | ||
return None | ||
for name in support_search: | ||
if name in item: | ||
return name | ||
return None | ||
|
||
|
||
class ActionSearchConsume(Action): | ||
def name(self): | ||
return 'action_search_consume' | ||
|
||
def run(self, dispatcher, tracker, domain): | ||
item = tracker.get_slot("item") | ||
item = extract_item(item) | ||
if item is None: | ||
dispatcher.utter_message("您好,我现在只会查话费和流量") | ||
dispatcher.utter_message("你可以这样问我:“帮我查话费”") | ||
return [] | ||
|
||
time = tracker.get_slot("time") | ||
if time is None: | ||
dispatcher.utter_message("您想查询哪个月的消费?") | ||
return [] | ||
# query database here using item and time as key. but you may normalize time format first. | ||
dispatcher.utter_message("好,请稍等") | ||
if item == "流量": | ||
dispatcher.utter_message("您好,您{}共使用{}二百八十兆,剩余三十兆。".format(time, item)) | ||
else: | ||
dispatcher.utter_message("您好,您{}共消费二十八元。".format(time)) | ||
return [] | ||
|
||
|
||
class MobilePolicy(KerasPolicy): | ||
def model_architecture(self, num_features, num_actions, max_history_len): | ||
"""Build a Keras model and return a compiled model.""" | ||
from keras.layers import LSTM, Activation, Masking, Dense | ||
from keras.models import Sequential | ||
|
||
n_hidden = 32 # size of hidden layer in LSTM | ||
# Build Model | ||
batch_shape = (None, max_history_len, num_features) | ||
|
||
model = Sequential() | ||
model.add(Masking(-1, batch_input_shape=batch_shape)) | ||
model.add(LSTM(n_hidden, batch_input_shape=batch_shape)) | ||
model.add(Dense(input_dim=n_hidden, output_dim=num_actions)) | ||
model.add(Activation("softmax")) | ||
|
||
model.compile(loss="categorical_crossentropy", | ||
optimizer="adam", | ||
metrics=["accuracy"]) | ||
|
||
logger.debug(model.summary()) | ||
return model | ||
|
||
|
||
def train_dialogue(domain_file="mobile_domain.yml", | ||
model_path="models/dialogue", | ||
training_data_file="data/mobile_story.md"): | ||
agent = Agent(domain_file, | ||
policies=[MemoizationPolicy(), MobilePolicy()]) | ||
|
||
agent.train( | ||
training_data_file, | ||
max_history=2, | ||
epochs=200, | ||
batch_size=16, | ||
augmentation_factor=50, | ||
validation_split=0.2 | ||
) | ||
|
||
agent.persist(model_path) | ||
return agent | ||
|
||
|
||
def train_nlu(): | ||
from rasa_nlu.converters import load_data | ||
from rasa_nlu.config import RasaNLUConfig | ||
from rasa_nlu.model import Trainer | ||
|
||
training_data = load_data("data/mobile_nlu_data.json") | ||
trainer = Trainer(RasaNLUConfig("mobile_nlu_model_config.json")) | ||
trainer.train(training_data) | ||
model_directory = trainer.persist("models/", project_name="ivr", fixed_model_name="demo") | ||
|
||
return model_directory | ||
|
||
|
||
def run_ivrbot_online(input_channel=ConsoleInputChannel(), | ||
interpreter=RasaNLUInterpreter("models/ivr/demo"), | ||
domain_file="mobile_domain.yml", | ||
training_data_file="data/mobile_story.md"): | ||
agent = Agent(domain_file, | ||
policies=[MemoizationPolicy(), KerasPolicy()], | ||
interpreter=interpreter) | ||
|
||
agent.train_online(training_data_file, | ||
input_channel=input_channel, | ||
max_history=2, | ||
batch_size=50, | ||
epochs=200, | ||
max_training_samples=300) | ||
|
||
return agent | ||
|
||
|
||
def run(serve_forever=True): | ||
agent = Agent.load("models/dialogue", | ||
interpreter=RasaNLUInterpreter("models/ivr/demo")) | ||
|
||
if serve_forever: | ||
agent.handle_channel(ConsoleInputChannel()) | ||
return agent | ||
|
||
|
||
if __name__ == "__main__": | ||
logging.basicConfig(level="INFO") | ||
|
||
parser = argparse.ArgumentParser( | ||
description="starts the bot") | ||
|
||
parser.add_argument( | ||
"task", | ||
choices=["train-nlu", "train-dialogue", "run", "online_train"], | ||
help="what the bot should do - e.g. run or train?") | ||
task = parser.parse_args().task | ||
|
||
# decide what to do based on first parameter of the script | ||
if task == "train-nlu": | ||
train_nlu() | ||
elif task == "train-dialogue": | ||
train_dialogue() | ||
elif task == "run": | ||
run() | ||
elif task == "online_train": | ||
run_ivrbot_online() | ||
else: | ||
warnings.warn("Need to pass either 'train-nlu', 'train-dialogue' or " | ||
"'run' to use the script.") | ||
exit(1) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
import os | ||
|
||
|
||
DIALOG_MAXIMUM_CHARACTER_LENGTH = 400 | ||
|
||
|
||
class CorpusObject(list): | ||
""" | ||
This is a proxy object that allow additional | ||
attributes to be added to the collections of | ||
data that get returned by the corpus reader. | ||
""" | ||
|
||
def __init__(self, *args, **kwargs): | ||
""" | ||
Imitate a list by allowing a value to be passed in. | ||
""" | ||
if args: | ||
super(CorpusObject, self).__init__(args[0]) | ||
else: | ||
super(CorpusObject, self).__init__() | ||
|
||
self.categories = [] | ||
|
||
|
||
class Corpus(object): | ||
|
||
def __init__(self): | ||
current_directory = os.path.dirname(os.path.abspath(__file__)) | ||
self.data_directory = os.path.join(current_directory, 'data') | ||
|
||
def get_file_path(self, dotted_path, extension='json'): | ||
""" | ||
Reads a dotted file path and returns the file path. | ||
""" | ||
|
||
# If the operating system's file path seperator character is in the string | ||
if os.sep in dotted_path or '/' in dotted_path: | ||
# Assume the path is a valid file path | ||
return dotted_path | ||
|
||
parts = dotted_path.split('.') | ||
if parts[0] == 'chatterbot': | ||
parts.pop(0) | ||
parts[0] = self.data_directory | ||
|
||
corpus_path = os.path.join(*parts) | ||
|
||
if os.path.exists(corpus_path + '.{}'.format(extension)): | ||
corpus_path += '.{}'.format(extension) | ||
|
||
return corpus_path | ||
|
||
def read_corpus(self, file_name): | ||
""" | ||
Read and return the data from a corpus json file. | ||
""" | ||
import io | ||
import yaml | ||
|
||
with io.open(file_name, encoding='utf-8') as data_file: | ||
data = yaml.load(data_file) | ||
return data | ||
|
||
def list_corpus_files(self, dotted_path): | ||
""" | ||
Return a list of file paths to each data file in | ||
the specified corpus. | ||
""" | ||
CORPUS_EXTENSION = 'yml' | ||
|
||
corpus_path = self.get_file_path(dotted_path, extension=CORPUS_EXTENSION) | ||
paths = [] | ||
|
||
if os.path.isdir(corpus_path): | ||
for dirname, dirnames, filenames in os.walk(corpus_path): | ||
for datafile in filenames: | ||
if datafile.endswith(CORPUS_EXTENSION): | ||
paths.append(os.path.join(dirname, datafile)) | ||
else: | ||
paths.append(corpus_path) | ||
|
||
paths.sort() | ||
return paths | ||
|
||
def load_corpus(self, dotted_path): | ||
""" | ||
Return the data contained within a specified corpus. | ||
""" | ||
data_file_paths = self.list_corpus_files(dotted_path) | ||
|
||
corpora = [] | ||
|
||
for file_path in data_file_paths: | ||
corpus = CorpusObject() | ||
corpus_data = self.read_corpus(file_path) | ||
|
||
conversations = corpus_data.get('conversations', []) | ||
corpus.categories = corpus_data.get('categories', []) | ||
corpus.extend(conversations) | ||
|
||
corpora.append(corpus) | ||
|
||
return corpora | ||
|
||
c = Corpus() | ||
res = c.load_corpus("../data/chinese_dialogs") | ||
texts = [] | ||
with open("../data/chat_detection_non_task.txt", "w") as f: | ||
f.write("text,intent\n") | ||
for categorys in res: # category | ||
for dialogus in categorys: | ||
for text in dialogus: | ||
f.write(text+"|non_task\n") | ||
|
||
|
||
|
Oops, something went wrong.