Skip to content

Commit

Permalink
rm Flux.Zeros (#1882)
Browse files Browse the repository at this point in the history
* rm Flux.Zeros, take N+1

* human-readable loadparams tests, same results

* fixup

* make the words match the code

* upgrade to test Chain, more errors, but same on master

* Update src/utils.jl

Co-authored-by: Carlo Lucibello <[email protected]>

* Update src/layers/basic.jl

Co-authored-by: Carlo Lucibello <[email protected]>
  • Loading branch information
mcabbott and CarloLucibello authored Mar 5, 2022
1 parent 0b3e8c5 commit 0edf602
Show file tree
Hide file tree
Showing 11 changed files with 66 additions and 157 deletions.
1 change: 0 additions & 1 deletion src/Flux.jl
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,6 @@ using CUDA
const use_cuda = Ref{Union{Nothing,Bool}}(nothing)

include("utils.jl")
include("zeros.jl")
include("onehot.jl")
include("functor.jl")

Expand Down
8 changes: 8 additions & 0 deletions src/deprecations.jl
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,14 @@ end

@deprecate frequencies(xs) group_counts(xs)

struct Zeros
function Zeros()
Base.depwarn("Flux.Zeros is no more, has ceased to be, is bereft of life, is an ex-boondoggle... please use bias=false instead", :Zeros)
false
end
end
Zeros(args...) = Zeros() # was used both Dense(10, 2, initb = Zeros) and Dense(rand(2,10), Zeros())

# Channel notation: Changed to match Conv, but very softly deprecated!
# Perhaps change to @deprecate for v0.14, but there is no plan to remove these.
Dense(in::Integer, out::Integer, σ = identity; kw...) =
Expand Down
6 changes: 3 additions & 3 deletions src/layers/basic.jl
Original file line number Diff line number Diff line change
Expand Up @@ -167,7 +167,7 @@ end
function Base.show(io::IO, l::Dense)
print(io, "Dense(", size(l.weight, 2), " => ", size(l.weight, 1))
l.σ == identity || print(io, ", ", l.σ)
l.bias == Zeros() && print(io, "; bias=false")
l.bias == false && print(io, "; bias=false")
print(io, ")")
end

Expand Down Expand Up @@ -301,7 +301,7 @@ end
Bilinear((in1, in2) => out, σ=identity; bias=true, init=glorot_uniform)
Bilinear(W::AbstractArray, [bias, σ])
Creates a bilinear layer, which operates on two inputs at the same time.
Creates a layer which is fully connected between two inputs and the output, and otherwise similar to [`Dense`](@ref).
Its output, given vectors `x` & `y`, is another vector `z` with,
for all `i ∈ 1:out`:
Expand Down Expand Up @@ -394,7 +394,7 @@ function Base.show(io::IO, l::Bilinear)
print(io, "Bilinear((", size(l.weight, 2), ", ", size(l.weight, 3), ") => ", size(l.weight, 1))
end
l.σ == identity || print(io, ", ", l.σ)
l.bias == Flux.Zeros() && print(io, "; bias=false")
l.bias === false && print(io, "; bias=false")
print(io, ")")
end

Expand Down
22 changes: 11 additions & 11 deletions src/layers/conv.jl
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,10 @@ _paddims(x::Tuple, y::Tuple) = (x..., y[(end - (length(y) - length(x) - 1)):end]
expand(N, i::Tuple) = i
expand(N, i::Integer) = ntuple(_ -> i, N)

conv_reshape_bias(c) = c.bias isa AbstractVector ?
reshape(c.bias, map(_->1, c.stride)..., :, 1) :
c.bias

"""
SamePad()
Expand Down Expand Up @@ -61,8 +65,8 @@ Then:
Keywords to control initialization of the layer:
* `init` - Function used to generate initial weights. Defaults to `glorot_uniform`.
* `bias` - Initial bias is zero by default, this can be disabled entirely by setting it to
`false`, or another vector explicitly as `bias = randn(Float32, out)`.
* `bias` - The initial bias vector is all zero by default. Trainable bias can be disabled entirely
by setting this to `false`, or another vector can be provided such as `bias = randn(Float32, out)`.
See also [`ConvTranspose`](@ref), [`DepthwiseConv`](@ref), [`CrossCor`](@ref).
Expand Down Expand Up @@ -159,10 +163,9 @@ end
@functor Conv

function (c::Conv)(x::AbstractArray)
b = reshape(c.bias, map(_->1, c.stride)..., :, 1)
σ = NNlib.fast_act(c.σ, x)
cdims = DenseConvDims(x, c.weight; stride = c.stride, padding = c.pad, dilation = c.dilation, groups = c.groups)
σ.(conv(x, c.weight, cdims) .+ b)
σ.(conv(x, c.weight, cdims) .+ conv_reshape_bias(c))
end

_channels_in(l ::Conv) = size(l.weight, ndims(l.weight)-1) * l.groups
Expand All @@ -183,7 +186,7 @@ function _print_conv_opt(io::IO, l)
if hasproperty(l, :groups)
(l.groups == 1) || print(io, ", groups=", l.groups)
end
(l.bias isa Zeros) && print(io, ", bias=false")
(l.bias === false) && print(io, ", bias=false")
end

"""
Expand Down Expand Up @@ -276,10 +279,9 @@ end
ChainRulesCore.@non_differentiable conv_transpose_dims(::Any, ::Any)

function (c::ConvTranspose)(x::AbstractArray)
b = reshape(c.bias, map(_->1, c.stride)..., :, 1)
σ = NNlib.fast_act(c.σ, x)
cdims = conv_transpose_dims(c, x)
σ.(∇conv_data(x, c.weight, cdims) .+ b)
σ.(∇conv_data(x, c.weight, cdims) .+ conv_reshape_bias(c))
end

function Base.show(io::IO, l::ConvTranspose)
Expand Down Expand Up @@ -371,10 +373,9 @@ depthwiseconvfilter(filter::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer};
init = glorot_uniform) where N = init(filter..., div(ch[2], ch[1]), ch[1])

function (c::DepthwiseConv)(x)
b = reshape(c.bias, map(_->1, c.stride)..., :, 1)
σ = NNlib.fast_act(c.σ, x)
cdims = DepthwiseConvDims(x, c.weight; stride=c.stride, padding=c.pad, dilation=c.dilation)
σ.(depthwiseconv(x, c.weight, cdims) .+ b)
σ.(depthwiseconv(x, c.weight, cdims) .+ conv_reshape_bias(c))
end

function Base.show(io::IO, l::DepthwiseConv)
Expand Down Expand Up @@ -452,10 +453,9 @@ function crosscor(x, w, ddims::DenseConvDims)
end

function (c::CrossCor)(x::AbstractArray)
b = reshape(c.bias, map(_->1, c.stride)..., :, 1)
σ = NNlib.fast_act(c.σ, x)
cdims = DenseConvDims(x, c.weight; stride=c.stride, padding=c.pad, dilation=c.dilation)
σ.(crosscor(x, c.weight, cdims) .+ b)
σ.(crosscor(x, c.weight, cdims) .+ conv_reshape_bias(c))
end

function Base.show(io::IO, l::CrossCor)
Expand Down
11 changes: 6 additions & 5 deletions src/utils.jl
Original file line number Diff line number Diff line change
Expand Up @@ -441,17 +441,18 @@ rand32(dims...) = Base.rand(Float32, dims...)
randn32(dims...) = Base.randn(Float32, dims...)

"""
create_bias(weights, bias, length)
create_bias(weights, bias, size...)
Return a bias parameter for a layer, based on the value given
to the constructor's keyword `bias=bias`.
* `bias == true` creates a zero vector, of the same type as weights.
* `bias == false` returns `Zeros()`, a special struct which exists only to encode the absence of bias.
* `bias::AbstractArray` uses the array provided, provided it has the correct size and eltype. If the type is wrong, it will be converted.
* `bias == true` creates a trainable array of the given size, of the same type as `weights`, initialised to zero.
* `bias == false` returns `false`, which is understood by AD to be non-differentiable.
* `bias::AbstractArray` uses the array provided, provided it has the correct size.
It does not at present correct the `eltype` to match that of `weights`.
"""
function create_bias(weights::AbstractArray, bias::Bool, dims::Integer...)
bias ? fill!(similar(weights, dims...), 0) : Zeros()
bias ? fill!(similar(weights, dims...), 0) : false
end
function create_bias(weights::AbstractArray, bias::AbstractArray, dims::Integer...)
size(bias) == dims || throw(DimensionMismatch("expected bias of size $(dims), got size $(size(bias))"))
Expand Down
52 changes: 0 additions & 52 deletions src/zeros.jl

This file was deleted.

4 changes: 2 additions & 2 deletions test/cuda/layers.jl
Original file line number Diff line number Diff line change
Expand Up @@ -155,8 +155,8 @@ end
end
end

@testset "Dense with Zeros bias" begin
l = Dense(ones(Float32, 4, 3), Flux.Zeros()) |> gpu
@testset "Dense without bias" begin
l = Dense(ones(Float32, 4, 3), false) |> gpu
ip = zeros(Float32, 3, 7) |> gpu

@test sum(l(ip)) 0.f0
Expand Down
2 changes: 1 addition & 1 deletion test/layers/basic.jl
Original file line number Diff line number Diff line change
Expand Up @@ -175,7 +175,7 @@ import Flux: activations
@test b1.σ == identity

b2 = Flux.Bilinear(randn(3,4,5), false)
@test b2.bias == Flux.Zeros()
@test b2.bias === false

b3 = Flux.Bilinear(randn(Float16, 3,4,5), true, tanh)
@test b3.σ == tanh
Expand Down
2 changes: 1 addition & 1 deletion test/layers/conv.jl
Original file line number Diff line number Diff line change
Expand Up @@ -273,7 +273,7 @@ end

@testset "constructors: $fun" for fun in [Conv, CrossCor, ConvTranspose, DepthwiseConv]
@test fun(rand(2,3,4)).bias isa Vector{Float64}
@test fun(rand(2,3,4,5), false).bias isa Flux.Zeros
@test fun(rand(2,3,4,5), false).bias === false
if fun == Conv
@test fun(rand(2,3,4,5,6), rand(6)).bias isa Vector{Float64}
@test_skip fun(rand(2,3,4,5,6), 1:6).bias isa Vector{Float64}
Expand Down
2 changes: 1 addition & 1 deletion test/optimise.jl
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ using Random
Nesterov(), RMSProp(), Momentum()]
Random.seed!(42)
w′ = randn(10, 10)
b = Flux.Zeros()
b = false
loss(x) = Flux.Losses.mse(w*x, w′*x .+ b)
for t = 1: 10^5
θ = params([w′, b])
Expand Down
Loading

0 comments on commit 0edf602

Please sign in to comment.