Skip to content

Commit

Permalink
Add @autosize (#2078)
Browse files Browse the repository at this point in the history
* autosize, take 1

* fix outputsize on LayerNorm

* tidy & improve

* add tests, release note

* rrule errors, improvements, tests

* documentation

* tweaks

* add jldoctest; output = false

* tweak

* using Flux
  • Loading branch information
mcabbott authored Oct 10, 2022
1 parent dfc5a7e commit 1ec32c2
Show file tree
Hide file tree
Showing 5 changed files with 318 additions and 32 deletions.
3 changes: 3 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,8 @@
# Flux Release Notes

## v0.13.7
* Added [`@autosize` macro](https://github.com/FluxML/Flux.jl/pull/2078)

## v0.13.4
* Added [`PairwiseFusion` layer](https://github.com/FluxML/Flux.jl/pull/1983)

Expand Down
92 changes: 62 additions & 30 deletions docs/src/outputsize.md
Original file line number Diff line number Diff line change
@@ -1,47 +1,79 @@
# Shape Inference

To help you generate models in an automated fashion, [`Flux.outputsize`](@ref) lets you
calculate the size returned produced by layers for a given size input.
This is especially useful for layers like [`Conv`](@ref).
Flux has some tools to help generate models in an automated fashion, by inferring the size
of arrays that layers will recieve, without doing any computation.
This is especially useful for convolutional models, where the same [`Conv`](@ref) layer
accepts any size of image, but the next layer may not.

It works by passing a "dummy" array into the model that preserves size information without running any computation.
`outputsize(f, inputsize)` works for all layers (including custom layers) out of the box.
By default, `inputsize` expects the batch dimension,
but you can exclude the batch size with `outputsize(f, inputsize; padbatch=true)` (assuming it to be one).
The higher-level tool is a macro [`@autosize`](@ref) which acts on the code defining the layers,
and replaces each appearance of `_` with the relevant size. This simple example returns a model
with `Dense(845 => 10)` as the last layer:

Using this utility function lets you automate model building for various inputs like so:
```julia
"""
make_model(width, height, inchannels, nclasses;
layer_config = [16, 16, 32, 32, 64, 64])
@autosize (28, 28, 1, 32) Chain(Conv((3, 3), _ => 5, relu, stride=2), Flux.flatten, Dense(_ => 10))
```

The input size may be provided at runtime, like `@autosize (sz..., 1, 32) Chain(Conv(`..., but all the
layer constructors containing `_` must be explicitly written out -- the macro sees the code as written.

This macro relies on a lower-level function [`outputsize`](@ref Flux.outputsize), which you can also use directly:

```julia
c = Conv((3, 3), 1 => 5, relu, stride=2)
Flux.outputsize(c, (28, 28, 1, 32)) # returns (13, 13, 5, 32)
```

Create a CNN for a given set of configuration parameters.
The function `outputsize` works by passing a "dummy" array into the model, which propagates through very cheaply.
It should work for all layers, including custom layers, out of the box.

# Arguments
- `width`: the input image width
- `height`: the input image height
- `inchannels`: the number of channels in the input image
- `nclasses`: the number of output classes
- `layer_config`: a vector of the number of filters per each conv layer
An example of how to automate model building is this:
```jldoctest; output = false, setup = :(using Flux)
"""
function make_model(width, height, inchannels, nclasses;
layer_config = [16, 16, 32, 32, 64, 64])
# construct a vector of conv layers programmatically
conv_layers = [Conv((3, 3), inchannels => layer_config[1])]
for (infilters, outfilters) in zip(layer_config, layer_config[2:end])
push!(conv_layers, Conv((3, 3), infilters => outfilters))
make_model(width, height, [inchannels, nclasses; layer_config])
Create a CNN for a given set of configuration parameters. Arguments:
- `width`, `height`: the input image size in pixels
- `inchannels`: the number of channels in the input image, default `1`
- `nclasses`: the number of output classes, default `10`
- Keyword `layer_config`: a vector of the number of channels per layer, default `[16, 16, 32, 64]`
"""
function make_model(width, height, inchannels = 1, nclasses = 10;
layer_config = [16, 16, 32, 64])
# construct a vector of layers:
conv_layers = []
push!(conv_layers, Conv((5, 5), inchannels => layer_config[1], relu, pad=SamePad()))
for (inch, outch) in zip(layer_config, layer_config[2:end])
push!(conv_layers, Conv((3, 3), inch => outch, sigmoid, stride=2))
end
# compute the output dimensions for the conv layers
# use padbatch=true to set the batch dimension to 1
conv_outsize = Flux.outputsize(conv_layers, (width, height, nchannels); padbatch=true)
# compute the output dimensions after these conv layers:
conv_outsize = Flux.outputsize(conv_layers, (width, height, inchannels); padbatch=true)
# the input dimension to Dense is programatically calculated from
# width, height, and nchannels
return Chain(conv_layers..., Dense(prod(conv_outsize) => nclasses))
# use this to define appropriate Dense layer:
last_layer = Dense(prod(conv_outsize) => nclasses)
return Chain(conv_layers..., Flux.flatten, last_layer)
end
m = make_model(28, 28, 3, layer_config = [9, 17, 33, 65])
Flux.outputsize(m, (28, 28, 3, 42)) == (10, 42) == size(m(randn(Float32, 28, 28, 3, 42)))
# output
true
```

Alternatively, using the macro, the definition of `make_model` could end with:

```
# compute the output dimensions & construct appropriate Dense layer:
return @autosize (width, height, inchannels, 1) Chain(conv_layers..., Flux.flatten, Dense(_ => nclasses))
end
```

### Listing

```@docs
Flux.@autosize
Flux.outputsize
```
1 change: 1 addition & 0 deletions src/Flux.jl
Original file line number Diff line number Diff line change
Expand Up @@ -55,6 +55,7 @@ include("layers/show.jl")
include("loading.jl")

include("outputsize.jl")
export @autosize

include("data/Data.jl")
using .Data
Expand Down
167 changes: 165 additions & 2 deletions src/outputsize.jl
Original file line number Diff line number Diff line change
Expand Up @@ -147,8 +147,12 @@ outputsize(m::AbstractVector, input::Tuple...; padbatch=false) = outputsize(Chai

## bypass statistics in normalization layers

for layer in (:LayerNorm, :BatchNorm, :InstanceNorm, :GroupNorm)
@eval (l::$layer)(x::AbstractArray{Nil}) = x
for layer in (:BatchNorm, :InstanceNorm, :GroupNorm) # LayerNorm works fine
@eval function (l::$layer)(x::AbstractArray{Nil})
l.chs == size(x, ndims(x)-1) || throw(DimensionMismatch(
string($layer, " expected ", l.chs, " channels, but got size(x) == ", size(x))))
x
end
end

## fixes for layers that don't work out of the box
Expand All @@ -168,3 +172,162 @@ for (fn, Dims) in ((:conv, DenseConvDims),)
end
end
end


"""
@autosize (size...,) Chain(Layer(_ => 2), Layer(_), ...)
Returns the specified model, with each `_` replaced by an inferred number,
for input of the given `size`.
The unknown sizes are usually the second-last dimension of that layer's input,
which Flux regards as the channel dimension.
(A few layers, `Dense` & [`LayerNorm`](@ref), instead always use the first dimension.)
The underscore may appear as an argument of a layer, or inside a `=>`.
It may be used in further calculations, such as `Dense(_ => _÷4)`.
# Examples
```
julia> @autosize (3, 1) Chain(Dense(_ => 2, sigmoid), BatchNorm(_, affine=false))
Chain(
Dense(3 => 2, σ), # 8 parameters
BatchNorm(2, affine=false),
)
julia> img = [28, 28];
julia> @autosize (img..., 1, 32) Chain( # size is only needed at runtime
Chain(c = Conv((3,3), _ => 5; stride=2, pad=SamePad()),
p = MeanPool((3,3)),
b = BatchNorm(_),
f = Flux.flatten),
Dense(_ => _÷4, relu, init=Flux.rand32), # can calculate output size _÷4
SkipConnection(Dense(_ => _, relu), +),
Dense(_ => 10),
) |> gpu # moves to GPU after initialisation
Chain(
Chain(
c = Conv((3, 3), 1 => 5, pad=1, stride=2), # 50 parameters
p = MeanPool((3, 3)),
b = BatchNorm(5), # 10 parameters, plus 10
f = Flux.flatten,
),
Dense(80 => 20, relu), # 1_620 parameters
SkipConnection(
Dense(20 => 20, relu), # 420 parameters
+,
),
Dense(20 => 10), # 210 parameters
) # Total: 10 trainable arrays, 2_310 parameters,
# plus 2 non-trainable, 10 parameters, summarysize 10.469 KiB.
julia> outputsize(ans, (28, 28, 1, 32))
(10, 32)
```
Limitations:
* While `@autosize (5, 32) Flux.Bilinear(_ => 7)` is OK, something like `Bilinear((_, _) => 7)` will fail.
* While `Scale(_)` and `LayerNorm(_)` are fine (and use the first dimension), `Scale(_,_)` and `LayerNorm(_,_)`
will fail if `size(x,1) != size(x,2)`.
* RNNs won't work: `@autosize (7, 11) LSTM(_ => 5)` fails, because `outputsize(RNN(3=>7), (3,))` also fails, a known issue.
"""
macro autosize(size, model)
Meta.isexpr(size, :tuple) || error("@autosize's first argument must be a tuple, the size of the input")
Meta.isexpr(model, :call) || error("@autosize's second argument must be something like Chain(layers...)")
ex = _makelazy(model)
@gensym m
quote
$m = $ex
$outputsize($m, $size)
$striplazy($m)
end |> esc
end

function _makelazy(ex::Expr)
n = _underscoredepth(ex)
n == 0 && return ex
n == 1 && error("@autosize doesn't expect an underscore here: $ex")
n == 2 && return :($LazyLayer($(string(ex)), $(_makefun(ex)), nothing))
n > 2 && return Expr(ex.head, ex.args[1], map(_makelazy, ex.args[2:end])...)
end
_makelazy(x) = x

function _underscoredepth(ex::Expr)
# Meta.isexpr(ex, :tuple) && :_ in ex.args && return 10
ex.head in (:call, :kw, :(->), :block) || return 0
ex.args[1] === :(=>) && ex.args[2] === :_ && return 1
m = maximum(_underscoredepth, ex.args)
m == 0 ? 0 : m+1
end
_underscoredepth(ex) = Int(ex === :_)

function _makefun(ex)
T = Meta.isexpr(ex, :call) ? ex.args[1] : Type
@gensym x s
Expr(:(->), x, Expr(:block, :($s = $autosizefor($T, $x)), _replaceunderscore(ex, s)))
end

"""
autosizefor(::Type, x)
If an `_` in your layer's constructor, used within `@autosize`, should
*not* mean the 2nd-last dimension, then you can overload this.
For instance `autosizefor(::Type{<:Dense}, x::AbstractArray) = size(x, 1)`
is needed to make `@autosize (2,3,4) Dense(_ => 5)` return
`Dense(2 => 5)` rather than `Dense(3 => 5)`.
"""
autosizefor(::Type, x::AbstractArray) = size(x, max(1, ndims(x)-1))
autosizefor(::Type{<:Dense}, x::AbstractArray) = size(x, 1)
autosizefor(::Type{<:LayerNorm}, x::AbstractArray) = size(x, 1)

_replaceunderscore(e, s) = e === :_ ? s : e
_replaceunderscore(ex::Expr, s) = Expr(ex.head, map(a -> _replaceunderscore(a, s), ex.args)...)

mutable struct LazyLayer
str::String
make::Function
layer
end

@functor LazyLayer

function (l::LazyLayer)(x::AbstractArray, ys::AbstractArray...)
l.layer === nothing || return l.layer(x, ys...)
made = l.make(x) # for something like `Bilinear((_,__) => 7)`, perhaps need `make(xy...)`, later.
y = made(x, ys...)
l.layer = made # mutate after we know that call worked
return y
end

function striplazy(m)
fs, re = functor(m)
re(map(striplazy, fs))
end
function striplazy(l::LazyLayer)
l.layer === nothing || return l.layer
error("LazyLayer should be initialised, e.g. by outputsize(model, size), before using stiplazy")
end

# Could make LazyLayer usable outside of @autosize, for instance allow Chain(@lazy Dense(_ => 2))?
# But then it will survive to produce weird structural gradients etc.

function ChainRulesCore.rrule(l::LazyLayer, x)
l(x), _ -> error("LazyLayer should never be used within a gradient. Call striplazy(model) first to remove all.")
end
function ChainRulesCore.rrule(::typeof(striplazy), m)
striplazy(m), _ -> error("striplazy should never be used within a gradient")
end

params!(p::Params, x::LazyLayer, seen = IdSet()) = error("LazyLayer should never be used within params(m). Call striplazy(m) first.")
function Base.show(io::IO, l::LazyLayer)
printstyled(io, "LazyLayer(", color=:light_black)
if l.layer == nothing
printstyled(io, l.str, color=:magenta)
else
printstyled(io, l.layer, color=:cyan)
end
printstyled(io, ")", color=:light_black)
end

_big_show(io::IO, l::LazyLayer, indent::Int=0, name=nothing) = _layer_show(io, l, indent, name)
Loading

0 comments on commit 1ec32c2

Please sign in to comment.