Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

start testing Enzyme #2392

Merged
merged 9 commits into from
Mar 20, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 7 additions & 1 deletion Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,8 @@ Adapt = "3, 4"
CUDA = "4, 5"
ChainRulesCore = "1.12"
Compat = "4.10.0"
Enzyme = "0.11"
FiniteDifferences = "0.12"
Functors = "0.4"
MLUtils = "0.4"
MacroTools = "0.5"
Expand All @@ -62,7 +64,9 @@ BSON = "fbb218c0-5317-5bc6-957e-2ee96dd4b1f0"
CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba"
ComponentArrays = "b0b7db55-cfe3-40fc-9ded-d10e2dbeff66"
Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"
Enzyme = "7da242da-08ed-463a-9acd-ee780be4f1d9"
FillArrays = "1a297f60-69ca-5386-bcde-b61e274b549b"
FiniteDifferences = "26cc04aa-876d-5657-8c51-4c34ba976000"
IterTools = "c8e1da08-722c-5040-9ed9-7db0dc04731e"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Metal = "dde4c033-4e86-420c-a63e-0dd931031962"
Expand All @@ -71,4 +75,6 @@ Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
cuDNN = "02a925ec-e4fe-4b08-9a7e-0d78e3d38ccd"

[targets]
test = ["Test", "Documenter", "IterTools", "LinearAlgebra", "FillArrays", "ComponentArrays", "BSON", "Pkg", "CUDA", "cuDNN", "Metal", "AMDGPU"]
test = ["Test", "Documenter", "IterTools", "LinearAlgebra", "FillArrays",
"ComponentArrays", "BSON", "Pkg", "CUDA", "cuDNN", "Metal", "AMDGPU",
"Enzyme", "FiniteDifferences"]
185 changes: 185 additions & 0 deletions test/ext_enzyme/enzyme.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,185 @@
using Test
using Flux

using Enzyme
using Functors
using FiniteDifferences
using CUDA

Enzyme.API.typeWarning!(false) # suppresses a warning with Bilinear https://github.com/EnzymeAD/Enzyme.jl/issues/1341
Enzyme.API.runtimeActivity!(true) # for Enzyme debugging
# Enzyme.Compiler.bitcode_replacement!(false)

_make_zero(x::Union{Number,AbstractArray}) = zero(x)
_make_zero(x) = x
make_zero(model) = fmap(_make_zero, model)
## make_differential(model) = fmapstructure(make_zero, model) # NOT SUPPORTED, See https://github.com/EnzymeAD/Enzyme.jl/issues/1329

function gradient_fd(f, x...)
x = [cpu(x) for x in x]
ps_and_res = [x isa AbstractArray ? (x, identity) : Flux.destructure(x) for x in x]
ps = [f64(x[1]) for x in ps_and_res]
res = [x[2] for x in ps_and_res]
fdm = FiniteDifferences.central_fdm(5, 1)
gs = FiniteDifferences.grad(fdm, (ps...) -> f((re(p) for (p,re) in zip(ps, res))...), ps...)
return ((re(g) for (re, g) in zip(res, gs))...,)
end

function gradient_ez(f, x...)
args = []
for x in x
if x isa Number
push!(args, Active(x))
else
push!(args, Duplicated(x, make_zero(x)))
end
end
ret = Enzyme.autodiff(ReverseWithPrimal, f, Active, args...)
g = ntuple(i -> x[i] isa Number ? ret[1][i] : args[i].dval, length(x))
return g
end

function test_grad(g1, g2; broken=false)
fmap_with_path(g1, g2) do kp, x, y
:state ∈ kp && return # ignore RNN and LSTM state
if x isa AbstractArray{<:Number}
# @show kp
@test x ≈ y rtol=1e-2 atol=1e-6 broken=broken
end
return x
end
end

function test_enzyme_grad(loss, model, x)
Flux.trainmode!(model)
l = loss(model, x)
@test loss(model, x) == l # Check loss doesn't change with multiple runs

grads_fd = gradient_fd(loss, model, x) |> cpu
grads_flux = Flux.gradient(loss, model, x) |> cpu
grads_enzyme = gradient_ez(loss, model, x) |> cpu

# test_grad(grads_flux, grads_enzyme)
test_grad(grads_fd, grads_enzyme)
end

@testset "gradient_ez" begin
@testset "number and arrays" begin
f(x, y) = sum(x.^2) + y^3
x = Float32[1, 2, 3]
y = 3f0
g = gradient_ez(f, x, y)
@test g[1] isa Array{Float32}
@test g[2] isa Float32
@test g[1] ≈ 2x
@test g[2] ≈ 3*y^2
end

@testset "struct" begin
struct SimpleDense{W, B, F}
weight::W
bias::B
σ::F
end
SimpleDense(in::Integer, out::Integer; σ=identity) = SimpleDense(randn(Float32, out, in), zeros(Float32, out), σ)
(m::SimpleDense)(x) = m.σ.(m.weight * x .+ m.bias)
@functor SimpleDense

model = SimpleDense(2, 4)
x = randn(Float32, 2)
loss(model, x) = sum(model(x))

g = gradient_ez(loss, model, x)
@test g[1] isa SimpleDense
@test g[2] isa Array{Float32}
@test g[1].weight isa Array{Float32}
@test g[1].bias isa Array{Float32}
@test g[1].weight ≈ ones(Float32, 4, 1) .* x'
@test g[1].bias ≈ ones(Float32, 4)
end
end

@testset "Models" begin
function loss(model, x)
Flux.reset!(model)
sum(model(x))
end

models_xs = [
(Dense(2, 4), randn(Float32, 2), "Dense"),
(Chain(Dense(2, 4, relu), Dense(4, 3)), randn(Float32, 2), "Chain(Dense, Dense)"),
(f64(Chain(Dense(2, 4), Dense(4, 2))), randn(Float64, 2, 1), "f64(Chain(Dense, Dense))"),
(Flux.Scale([1.0f0 2.0f0 3.0f0 4.0f0], true, abs2), randn(Float32, 2), "Flux.Scale"),
(Conv((3, 3), 2 => 3), randn(Float32, 3, 3, 2, 1), "Conv"),
(Chain(Conv((3, 3), 2 => 3, relu), Conv((3, 3), 3 => 1, relu)), rand(Float32, 5, 5, 2, 1), "Chain(Conv, Conv)"),
(Chain(Conv((4, 4), 2 => 2, pad=SamePad()), MeanPool((5, 5), pad=SamePad())), rand(Float32, 5, 5, 2, 2), "Chain(Conv, MeanPool)"),
(Maxout(() -> Dense(5 => 4, tanh), 3), randn(Float32, 5, 1), "Maxout"),
(RNN(3 => 2), randn(Float32, 3, 2), "RNN"),
(Chain(RNN(3 => 4), RNN(4 => 3)), randn(Float32, 3, 2), "Chain(RNN, RNN)"),
(LSTM(3 => 5), randn(Float32, 3, 2), "LSTM"),
(Chain(LSTM(3 => 5), LSTM(5 => 3)), randn(Float32, 3, 2), "Chain(LSTM, LSTM)"),
(SkipConnection(Dense(2 => 2), vcat), randn(Float32, 2, 3), "SkipConnection"),
(Flux.Bilinear((2, 2) => 3), randn(Float32, 2, 1), "Bilinear"),
]

for (model, x, name) in models_xs
@testset "check grad $name" begin
println("testing $name")
test_enzyme_grad(loss, model, x)
end
end
end

@testset "Recurrence Tests" begin
function loss(model, x)
Flux.reset!(model)
for i in 1:3
x = model(x)
end
return sum(x)
end

models_xs = [
(RNN(3 => 3), randn(Float32, 3, 2), "RNN"),
(LSTM(3 => 3), randn(Float32, 3, 2), "LSTM"),
# TESTS BELOW ARE BROKEN FOR ZYGOTE BUT CORRECT FOR ENZYME!
(Chain(RNN(3 => 5), RNN(5 => 3)), randn(Float32, 3, 2), "Chain(RNN, RNN)"),
(Chain(LSTM(3 => 5), LSTM(5 => 3)), randn(Float32, 3, 2), "Chain(LSTM, LSTM)"),
]

for (model, x, name) in models_xs
@testset "check grad $name" begin
println("testing $name")
test_enzyme_grad(loss, model, x)
end
end
end

@testset "Broken Models" begin
function loss(model, x)
Flux.reset!(model)
sum(model(x))
end

device = Flux.get_device()

models_xs = [
(GRU(3 => 5), randn(Float32, 3, 10), "GRU"),
(ConvTranspose((3, 3), 3 => 2, stride=2), rand(Float32, 5, 5, 3, 1), "ConvTranspose"),
]

for (model, x, name) in models_xs
@testset "check grad $name" begin
println("testing $name")
broken = false
try
test_enzyme_grad(loss, model, x)
catch e
println(e)
broken = true
end
@test broken
end
end
end

5 changes: 5 additions & 0 deletions test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -116,4 +116,9 @@ Random.seed!(0)
@info "Skipping Metal tests, set FLUX_TEST_METAL=true to run them."
end

@testset "Enzyme" begin
import Enzyme
include("ext_enzyme/enzyme.jl")
end

end
Loading