Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update docs #265

Merged
merged 6 commits into from
Jun 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 7 additions & 8 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ Grab some data and split into features and target:

```julia
iris = RDatasets.dataset("datasets", "iris");
y, X = unpack(iris, ==(:Species), colname -> true, rng=123);
y, X = unpack(iris, ==(:Species), rng=123);
X = Float32.(X); # To optmise for GPUs
```

Expand Down Expand Up @@ -83,17 +83,16 @@ Train the wrapped model:
julia> mach = machine(iterated_model, X, y)
julia> fit!(mach)

[ Info: Training machine(ProbabilisticIteratedModel(model = NeuralNetworkClassifier(builder = MLP(hidden = (5, 4), …), …), …), …).
[ Info: No iteration parameter specified. Using `iteration_parameter=:(epochs)`.
[ Info: final loss: 0.10431026246922499
[ Info: final training loss: 0.046286315
[ Info: Stop triggered by Patience(4) stopping criterion.
[ Info: Total of 349 iterations.
[ Info: No iteration parameter specified. Using `iteration_parameter=:(epochs)`.
[ Info: final loss: 0.1284184007796247
[ Info: final training loss: 0.055630706
[ Info: Stop triggered by NumberSinceBest(5) stopping criterion.
[ Info: Total of 811 iterations.
```
Inspect results:

```julia-repl
julia> plot(train_losses, label="Validation Loss", linewidth=2, size=(800,400))
julia> plot(train_losses, label="Training Loss")
julia> plot!(validation_losses, label="Validation Loss", linewidth=2, size=(800,400))
```

Expand Down
10 changes: 5 additions & 5 deletions docs/src/common_workflows/architecture_search/notebook.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -95,7 +95,7 @@
"cell_type": "code",
"source": [
"iris = RDatasets.dataset(\"datasets\", \"iris\");\n",
"y, X = unpack(iris, ==(:Species), colname -> true, rng = 123);\n",
"y, X = unpack(iris, ==(:Species), rng = 123);\n",
"X = Float32.(X); # To be compatible with type of network network parameters\n",
"first(X, 5)"
],
Expand Down Expand Up @@ -130,7 +130,7 @@
{
"output_type": "execute_result",
"data": {
"text/plain": "NeuralNetworkClassifier(\n builder = MLP(\n hidden = (1, 1, 1), \n σ = NNlib.relu), \n finaliser = NNlib.softmax, \n optimiser = Adam(0.01, (0.9, 0.999), 1.0e-8), \n loss = Flux.Losses.crossentropy, \n epochs = 10, \n batch_size = 8, \n lambda = 0.0, \n alpha = 0.0, \n rng = 42, \n optimiser_changes_trigger_retraining = false, \n acceleration = ComputationalResources.CPU1{Nothing}(nothing))"
"text/plain": "NeuralNetworkClassifier(\n builder = MLP(\n hidden = (1, 1, 1), \n σ = NNlib.relu), \n finaliser = NNlib.softmax, \n optimiser = Adam(0.01, (0.9, 0.999), 1.0e-8), \n loss = Flux.Losses.crossentropy, \n epochs = 10, \n batch_size = 8, \n lambda = 0.0, \n alpha = 0.0, \n rng = 42, \n optimiser_changes_trigger_retraining = false, \n acceleration = CPU1{Nothing}(nothing))"
},
"metadata": {},
"execution_count": 4
Expand Down Expand Up @@ -306,7 +306,7 @@
{
"output_type": "execute_result",
"data": {
"text/plain": "NeuralNetworkClassifier(\n builder = MLP(\n hidden = (21, 57, 25), \n σ = NNlib.relu), \n finaliser = NNlib.softmax, \n optimiser = Adam(0.01, (0.9, 0.999), 1.0e-8), \n loss = Flux.Losses.crossentropy, \n epochs = 10, \n batch_size = 8, \n lambda = 0.0, \n alpha = 0.0, \n rng = 42, \n optimiser_changes_trigger_retraining = false, \n acceleration = ComputationalResources.CPU1{Nothing}(nothing))"
"text/plain": "NeuralNetworkClassifier(\n builder = MLP(\n hidden = (45, 49, 21), \n σ = NNlib.relu), \n finaliser = NNlib.softmax, \n optimiser = Adam(0.01, (0.9, 0.999), 1.0e-8), \n loss = Flux.Losses.crossentropy, \n epochs = 10, \n batch_size = 8, \n lambda = 0.0, \n alpha = 0.0, \n rng = 42, \n optimiser_changes_trigger_retraining = false, \n acceleration = CPU1{Nothing}(nothing))"
},
"metadata": {},
"execution_count": 8
Expand Down Expand Up @@ -341,9 +341,9 @@
{
"output_type": "execute_result",
"data": {
"text/plain": "\u001b[1m10×2 DataFrame\u001b[0m\n\u001b[1m Row \u001b[0m│\u001b[1m mlp \u001b[0m\u001b[1m measurement \u001b[0m\n │\u001b[90m MLP… \u001b[0m\u001b[90m Float64 \u001b[0m\n─────┼────────────────────────────────────────────\n 1 │ MLP(hidden = (21, 57, 25), …) 0.0867019\n 2 │ MLP(hidden = (45, 17, 13), …) 0.0929803\n 3 │ MLP(hidden = (33, 13, 49), …) 0.0973896\n 4 │ MLP(hidden = (21, 41, 61), …) 0.0981502\n 5 │ MLP(hidden = (57, 49, 61), …) 0.100331\n 6 │ MLP(hidden = (25, 25, 29), …) 0.101083\n 7 │ MLP(hidden = (29, 61, 21), …) 0.101466\n 8 │ MLP(hidden = (29, 61, 5), …) 0.107513\n 9 │ MLP(hidden = (21, 61, 17), …) 0.107874\n 10 │ MLP(hidden = (45, 49, 61), …) 0.111292",
"text/plain": "\u001b[1m10×2 DataFrame\u001b[0m\n\u001b[1m Row \u001b[0m│\u001b[1m mlp \u001b[0m\u001b[1m measurement \u001b[0m\n │\u001b[90m MLP… \u001b[0m\u001b[90m Float64 \u001b[0m\n─────┼────────────────────────────────────────────\n 1 │ MLP(hidden = (45, 49, 21), …) 0.0860875\n 2 │ MLP(hidden = (25, 45, 33), …) 0.0877367\n 3 │ MLP(hidden = (29, 17, 53), …) 0.0970372\n 4 │ MLP(hidden = (61, 9, 29), …) 0.0970978\n 5 │ MLP(hidden = (49, 49, 9), …) 0.0971594\n 6 │ MLP(hidden = (21, 33, 61), …) 0.0984172\n 7 │ MLP(hidden = (57, 61, 61), …) 0.099232\n 8 │ MLP(hidden = (41, 13, 25), …) 0.101498\n 9 │ MLP(hidden = (53, 29, 21), …) 0.105323\n 10 │ MLP(hidden = (57, 33, 45), …) 0.110168",
"text/html": [
"<div><div style = \"float: left;\"><span>10×2 DataFrame</span></div><div style = \"clear: both;\"></div></div><div class = \"data-frame\" style = \"overflow-x: scroll;\"><table class = \"data-frame\" style = \"margin-bottom: 6px;\"><thead><tr class = \"header\"><th class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\">Row</th><th style = \"text-align: left;\">mlp</th><th style = \"text-align: left;\">measurement</th></tr><tr class = \"subheader headerLastRow\"><th class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\"></th><th title = \"MLJFlux.MLP{3}\" style = \"text-align: left;\">MLP…</th><th title = \"Float64\" style = \"text-align: left;\">Float64</th></tr></thead><tbody><tr><td class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\">1</td><td style = \"text-align: left;\">MLP(hidden = (21, 57, 25), …)</td><td style = \"text-align: right;\">0.0867019</td></tr><tr><td class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\">2</td><td style = \"text-align: left;\">MLP(hidden = (45, 17, 13), …)</td><td style = \"text-align: right;\">0.0929803</td></tr><tr><td class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\">3</td><td style = \"text-align: left;\">MLP(hidden = (33, 13, 49), …)</td><td style = \"text-align: right;\">0.0973896</td></tr><tr><td class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\">4</td><td style = \"text-align: left;\">MLP(hidden = (21, 41, 61), …)</td><td style = \"text-align: right;\">0.0981502</td></tr><tr><td class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\">5</td><td style = \"text-align: left;\">MLP(hidden = (57, 49, 61), …)</td><td style = \"text-align: right;\">0.100331</td></tr><tr><td class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\">6</td><td style = \"text-align: left;\">MLP(hidden = (25, 25, 29), …)</td><td style = \"text-align: right;\">0.101083</td></tr><tr><td class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\">7</td><td style = \"text-align: left;\">MLP(hidden = (29, 61, 21), …)</td><td style = \"text-align: right;\">0.101466</td></tr><tr><td class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\">8</td><td style = \"text-align: left;\">MLP(hidden = (29, 61, 5), …)</td><td style = \"text-align: right;\">0.107513</td></tr><tr><td class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\">9</td><td style = \"text-align: left;\">MLP(hidden = (21, 61, 17), …)</td><td style = \"text-align: right;\">0.107874</td></tr><tr><td class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\">10</td><td style = \"text-align: left;\">MLP(hidden = (45, 49, 61), …)</td><td style = \"text-align: right;\">0.111292</td></tr></tbody></table></div>"
"<div><div style = \"float: left;\"><span>10×2 DataFrame</span></div><div style = \"clear: both;\"></div></div><div class = \"data-frame\" style = \"overflow-x: scroll;\"><table class = \"data-frame\" style = \"margin-bottom: 6px;\"><thead><tr class = \"header\"><th class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\">Row</th><th style = \"text-align: left;\">mlp</th><th style = \"text-align: left;\">measurement</th></tr><tr class = \"subheader headerLastRow\"><th class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\"></th><th title = \"MLJFlux.MLP{3}\" style = \"text-align: left;\">MLP…</th><th title = \"Float64\" style = \"text-align: left;\">Float64</th></tr></thead><tbody><tr><td class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\">1</td><td style = \"text-align: left;\">MLP(hidden = (45, 49, 21), …)</td><td style = \"text-align: right;\">0.0860875</td></tr><tr><td class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\">2</td><td style = \"text-align: left;\">MLP(hidden = (25, 45, 33), …)</td><td style = \"text-align: right;\">0.0877367</td></tr><tr><td class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\">3</td><td style = \"text-align: left;\">MLP(hidden = (29, 17, 53), …)</td><td style = \"text-align: right;\">0.0970372</td></tr><tr><td class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\">4</td><td style = \"text-align: left;\">MLP(hidden = (61, 9, 29), …)</td><td style = \"text-align: right;\">0.0970978</td></tr><tr><td class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\">5</td><td style = \"text-align: left;\">MLP(hidden = (49, 49, 9), …)</td><td style = \"text-align: right;\">0.0971594</td></tr><tr><td class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\">6</td><td style = \"text-align: left;\">MLP(hidden = (21, 33, 61), …)</td><td style = \"text-align: right;\">0.0984172</td></tr><tr><td class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\">7</td><td style = \"text-align: left;\">MLP(hidden = (57, 61, 61), …)</td><td style = \"text-align: right;\">0.099232</td></tr><tr><td class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\">8</td><td style = \"text-align: left;\">MLP(hidden = (41, 13, 25), …)</td><td style = \"text-align: right;\">0.101498</td></tr><tr><td class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\">9</td><td style = \"text-align: left;\">MLP(hidden = (53, 29, 21), …)</td><td style = \"text-align: right;\">0.105323</td></tr><tr><td class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\">10</td><td style = \"text-align: left;\">MLP(hidden = (57, 33, 45), …)</td><td style = \"text-align: right;\">0.110168</td></tr></tbody></table></div>"
]
},
"metadata": {},
Expand Down
2 changes: 1 addition & 1 deletion docs/src/common_workflows/architecture_search/notebook.jl
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ import Optimisers # native Flux.jl optimisers no longer supported
# ### Loading and Splitting the Data

iris = RDatasets.dataset("datasets", "iris");
y, X = unpack(iris, ==(:Species), colname -> true, rng = 123);
y, X = unpack(iris, ==(:Species), rng = 123);
X = Float32.(X); # To be compatible with type of network network parameters
first(X, 5)

Expand Down
2 changes: 1 addition & 1 deletion docs/src/common_workflows/architecture_search/notebook.md
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ import Optimisers # native Flux.jl optimisers no longer supported

````@example architecture_search
iris = RDatasets.dataset("datasets", "iris");
y, X = unpack(iris, ==(:Species), colname -> true, rng = 123);
y, X = unpack(iris, ==(:Species), rng = 123);
X = Float32.(X); # To be compatible with type of network network parameters
first(X, 5)
````
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,7 @@
"cell_type": "code",
"source": [
"iris = RDatasets.dataset(\"datasets\", \"iris\");\n",
"y, X = unpack(iris, ==(:Species), colname -> true, rng = 123);\n",
"y, X = unpack(iris, ==(:Species), rng = 123);\n",
"X = Float32.(X); # To be compatible with type of network network parameters\n",
"first(X, 5)"
],
Expand Down
8 changes: 4 additions & 4 deletions docs/src/common_workflows/comparison/notebook.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,7 @@
"cell_type": "code",
"source": [
"iris = RDatasets.dataset(\"datasets\", \"iris\");\n",
"y, X = unpack(iris, ==(:Species), colname -> true, rng=123);"
"y, X = unpack(iris, ==(:Species), rng=123);"
],
"metadata": {},
"execution_count": 3
Expand All @@ -107,7 +107,7 @@
{
"output_type": "execute_result",
"data": {
"text/plain": "NeuralNetworkClassifier(\n builder = MLP(\n hidden = (5, 4), \n σ = NNlib.relu), \n finaliser = NNlib.softmax, \n optimiser = Adam(0.01, (0.9, 0.999), 1.0e-8), \n loss = Flux.Losses.crossentropy, \n epochs = 50, \n batch_size = 8, \n lambda = 0.0, \n alpha = 0.0, \n rng = 42, \n optimiser_changes_trigger_retraining = false, \n acceleration = ComputationalResources.CPU1{Nothing}(nothing))"
"text/plain": "NeuralNetworkClassifier(\n builder = MLP(\n hidden = (5, 4), \n σ = NNlib.relu), \n finaliser = NNlib.softmax, \n optimiser = Adam(0.01, (0.9, 0.999), 1.0e-8), \n loss = Flux.Losses.crossentropy, \n epochs = 50, \n batch_size = 8, \n lambda = 0.0, \n alpha = 0.0, \n rng = 42, \n optimiser_changes_trigger_retraining = false, \n acceleration = CPU1{Nothing}(nothing))"
},
"metadata": {},
"execution_count": 4
Expand Down Expand Up @@ -271,9 +271,9 @@
{
"output_type": "execute_result",
"data": {
"text/plain": "\u001b[1m4×2 DataFrame\u001b[0m\n\u001b[1m Row \u001b[0m│\u001b[1m mlp \u001b[0m\u001b[1m measurement \u001b[0m\n │\u001b[90m Probabil… \u001b[0m\u001b[90m Float64 \u001b[0m\n─────┼────────────────────────────────────────────────\n 1 │ BayesianLDA(method = gevd, …) 0.0610826\n 2 │ NeuralNetworkClassifier(builder … 0.0857014\n 3 │ RandomForestClassifier(max_depth… 0.102881\n 4 │ ProbabilisticTunedModel(model = … 0.221056",
"text/plain": "\u001b[1m4×2 DataFrame\u001b[0m\n\u001b[1m Row \u001b[0m│\u001b[1m mlp \u001b[0m\u001b[1m measurement \u001b[0m\n │\u001b[90m Probabil… \u001b[0m\u001b[90m Float64 \u001b[0m\n─────┼────────────────────────────────────────────────\n 1 │ BayesianLDA(method = gevd, …) 0.0610826\n 2 │ NeuralNetworkClassifier(builder … 0.0857014\n 3 │ RandomForestClassifier(max_depth… 0.107885\n 4 │ ProbabilisticTunedModel(model = … 0.221056",
"text/html": [
"<div><div style = \"float: left;\"><span>4×2 DataFrame</span></div><div style = \"clear: both;\"></div></div><div class = \"data-frame\" style = \"overflow-x: scroll;\"><table class = \"data-frame\" style = \"margin-bottom: 6px;\"><thead><tr class = \"header\"><th class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\">Row</th><th style = \"text-align: left;\">mlp</th><th style = \"text-align: left;\">measurement</th></tr><tr class = \"subheader headerLastRow\"><th class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\"></th><th title = \"MLJModelInterface.Probabilistic\" style = \"text-align: left;\">Probabil…</th><th title = \"Float64\" style = \"text-align: left;\">Float64</th></tr></thead><tbody><tr><td class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\">1</td><td style = \"text-align: left;\">BayesianLDA(method = gevd, …)</td><td style = \"text-align: right;\">0.0610826</td></tr><tr><td class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\">2</td><td style = \"text-align: left;\">NeuralNetworkClassifier(builder = MLP(hidden = (5, 4), …), …)</td><td style = \"text-align: right;\">0.0857014</td></tr><tr><td class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\">3</td><td style = \"text-align: left;\">RandomForestClassifier(max_depth = -1, …)</td><td style = \"text-align: right;\">0.102881</td></tr><tr><td class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\">4</td><td style = \"text-align: left;\">ProbabilisticTunedModel(model = XGBoostClassifier(test = 1, …), …)</td><td style = \"text-align: right;\">0.221056</td></tr></tbody></table></div>"
"<div><div style = \"float: left;\"><span>4×2 DataFrame</span></div><div style = \"clear: both;\"></div></div><div class = \"data-frame\" style = \"overflow-x: scroll;\"><table class = \"data-frame\" style = \"margin-bottom: 6px;\"><thead><tr class = \"header\"><th class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\">Row</th><th style = \"text-align: left;\">mlp</th><th style = \"text-align: left;\">measurement</th></tr><tr class = \"subheader headerLastRow\"><th class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\"></th><th title = \"Probabilistic\" style = \"text-align: left;\">Probabil…</th><th title = \"Float64\" style = \"text-align: left;\">Float64</th></tr></thead><tbody><tr><td class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\">1</td><td style = \"text-align: left;\">BayesianLDA(method = gevd, …)</td><td style = \"text-align: right;\">0.0610826</td></tr><tr><td class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\">2</td><td style = \"text-align: left;\">NeuralNetworkClassifier(builder = MLP(hidden = (5, 4), …), …)</td><td style = \"text-align: right;\">0.0857014</td></tr><tr><td class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\">3</td><td style = \"text-align: left;\">RandomForestClassifier(max_depth = -1, …)</td><td style = \"text-align: right;\">0.107885</td></tr><tr><td class = \"rowNumber\" style = \"font-weight: bold; text-align: right;\">4</td><td style = \"text-align: left;\">ProbabilisticTunedModel(model = XGBoostClassifier(test = 1, …), …)</td><td style = \"text-align: right;\">0.221056</td></tr></tbody></table></div>"
]
},
"metadata": {},
Expand Down
2 changes: 1 addition & 1 deletion docs/src/common_workflows/comparison/notebook.jl
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ import Optimisers # native Flux.jl optimisers no longer supported
# ### Loading and Splitting the Data

iris = RDatasets.dataset("datasets", "iris");
y, X = unpack(iris, ==(:Species), colname -> true, rng=123);
y, X = unpack(iris, ==(:Species), rng=123);


# ### Instantiating the models Now let's construct our model. This follows a similar setup
Expand Down
2 changes: 1 addition & 1 deletion docs/src/common_workflows/comparison/notebook.md
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ import Optimisers # native Flux.jl optimisers no longer supported

````@example comparison
iris = RDatasets.dataset("datasets", "iris");
y, X = unpack(iris, ==(:Species), colname -> true, rng=123);
y, X = unpack(iris, ==(:Species), rng=123);
nothing #hide
````

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -73,7 +73,7 @@
"cell_type": "code",
"source": [
"iris = RDatasets.dataset(\"datasets\", \"iris\");\n",
"y, X = unpack(iris, ==(:Species), colname -> true, rng=123);"
"y, X = unpack(iris, ==(:Species), rng=123);"
],
"metadata": {},
"execution_count": null
Expand Down
Loading
Loading