This repository has been archived by the owner on Aug 4, 2022. It is now read-only.
-
-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #2 from Alexander-Barth/main
import PyTorch weights for VGG11/13/16/19 and ResNet50/101/152
- Loading branch information
Showing
2 changed files
with
195 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,99 @@ | ||
# Converts the weigths of a PyTorch model to a Flux model from Metalhead | ||
|
||
# PyTorch need to be installed | ||
|
||
# Tested on ResNet and VGG models | ||
|
||
using Flux | ||
import Metalhead | ||
using DataStructures | ||
using Statistics | ||
using BSON | ||
using PyCall | ||
using Images | ||
using Test | ||
|
||
torchvision = pyimport("torchvision") | ||
torch = pyimport("torch") | ||
|
||
modellib = [ | ||
("vgg11", () -> Metalhead.VGG(11), torchvision.models.vgg11), | ||
("vgg13", () -> Metalhead.VGG(13), torchvision.models.vgg13), | ||
("vgg16", () -> Metalhead.VGG(16), torchvision.models.vgg16), | ||
("vgg19", () -> Metalhead.VGG(19), torchvision.models.vgg19), | ||
("resnet18", () -> Metalhead.ResNet(18), torchvision.models.resnet18), | ||
("resnet34", () -> Metalhead.ResNet(34), torchvision.models.resnet34), | ||
("resnet50", () -> Metalhead.ResNet(50), torchvision.models.resnet50), | ||
("resnet101",() -> Metalhead.ResNet(101),torchvision.models.resnet101), | ||
("resnet152",() -> Metalhead.ResNet(152),torchvision.models.resnet152), | ||
] | ||
|
||
|
||
function _list_state(node::Flux.BatchNorm,channel,prefix) | ||
# use the same order of parameters than PyTorch | ||
put!(channel, (prefix * ".γ", node.γ)) # weigth (learnable) | ||
put!(channel, (prefix * ".β", node.β)) # bias (learnable) | ||
put!(channel, (prefix * ".μ", node.μ)) # running mean | ||
put!(channel, (prefix * ".σ²", node.σ²)) # running variance | ||
end | ||
|
||
function _list_state(node::Union{Flux.Conv,Flux.Dense},channel,prefix) | ||
put!(channel, (prefix * ".weight", node.weight)) | ||
|
||
if node.bias !== Flux.Zeros() | ||
put!(channel, (prefix * ".bias", node.bias)) | ||
end | ||
end | ||
|
||
_list_state(node,channel,prefix) = nothing | ||
|
||
function _list_state(node::Union{Flux.Chain,Flux.Parallel},channel,prefix) | ||
for (i,n) in enumerate(node.layers) | ||
_list_state(n,channel,prefix * ".layers[$i]") | ||
end | ||
end | ||
|
||
function list_state(node; prefix = "model") | ||
Channel() do channel | ||
_list_state(node,channel,prefix) | ||
end | ||
end | ||
|
||
for (modelname,jlmodel,pymodel) in modellib | ||
|
||
model = jlmodel() | ||
pytorchmodel = pymodel(pretrained=true) | ||
|
||
state = OrderedDict(list_state(model.layers)) | ||
|
||
# pytorchmodel.state_dict() looses the order | ||
state_dict = OrderedDict(pycall(pytorchmodel.state_dict,PyObject).items()) | ||
pytorch_pp = OrderedDict((k,v.numpy()) for (k,v) in state_dict if !occursin("num_batches_tracked",k)) | ||
|
||
|
||
# loop over all parameters | ||
for ((flux_key,flux_param),(pytorch_key,pytorch_param)) in zip(state,pytorch_pp) | ||
if size(flux_param) == size(pytorch_param) | ||
# Dense weight and vectors | ||
flux_param .= pytorch_param | ||
elseif size(flux_param) == reverse(size(pytorch_param)) | ||
tmp = pytorch_param | ||
tmp = permutedims(tmp,ndims(tmp):-1:1) | ||
|
||
if ndims(flux_param) == 4 | ||
# convolutional weights | ||
flux_param .= reverse(tmp,dims=(1,2)) | ||
else | ||
flux_param .= tmp | ||
end | ||
else | ||
@debug begin | ||
@show size(flux_param), size(pytorch_param) | ||
end | ||
error("incompatible shape $flux_key $pytorch_key") | ||
end | ||
end | ||
|
||
@info "saving model $modelname" | ||
BSON.@save joinpath(@__DIR__,"weights","$(modelname).bson") model | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,96 @@ | ||
# Compare Flux model from Metalhead to PyTorch model | ||
# for a sample image | ||
|
||
# PyTorch need to be installed | ||
|
||
# Tested on ResNet and VGG models | ||
|
||
using Flux | ||
import Metalhead | ||
using DataStructures | ||
using Statistics | ||
using BSON | ||
using PyCall | ||
using Images | ||
using Test | ||
|
||
using MLUtils | ||
using Random | ||
|
||
torchvision = pyimport("torchvision") | ||
torch = pyimport("torch") | ||
|
||
modellib = [ | ||
("vgg11", () -> Metalhead.VGG(11), torchvision.models.vgg11), | ||
("vgg13", () -> Metalhead.VGG(13), torchvision.models.vgg13), | ||
("vgg16", () -> Metalhead.VGG(16), torchvision.models.vgg16), | ||
("vgg19", () -> Metalhead.VGG(19), torchvision.models.vgg19), | ||
("resnet18", () -> Metalhead.ResNet(18), torchvision.models.resnet18), | ||
("resnet34", () -> Metalhead.ResNet(34), torchvision.models.resnet34), | ||
("resnet50", () -> Metalhead.ResNet(50), torchvision.models.resnet50), | ||
("resnet101",() -> Metalhead.ResNet(101),torchvision.models.resnet101), | ||
("resnet152",() -> Metalhead.ResNet(152),torchvision.models.resnet152), | ||
] | ||
|
||
|
||
tr(tmp) = permutedims(tmp,ndims(tmp):-1:1) | ||
|
||
|
||
function normalize(data) | ||
cmean = reshape(Float32[0.485, 0.456, 0.406],(1,1,3,1)) | ||
cstd = reshape(Float32[0.229, 0.224, 0.225],(1,1,3,1)) | ||
return (data .- cmean) ./ cstd | ||
end | ||
|
||
# test image | ||
guitar_path = download("https://cdn.pixabay.com/photo/2015/05/07/11/02/guitar-756326_960_720.jpg") | ||
|
||
# image net labels | ||
labels = readlines(download("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt")) | ||
|
||
weightsdir = joinpath(@__DIR__,"..","weights") | ||
|
||
for (modelname,jlmodel,pymodel) in modellib | ||
println(modelname) | ||
|
||
model = jlmodel() | ||
|
||
saved_model = BSON.load(joinpath(weightsdir,"$(modelname).bson")) | ||
Flux.loadmodel!(model,saved_model[:model]) | ||
|
||
pytorchmodel = pymodel(pretrained=true) | ||
|
||
Flux.testmode!(model) | ||
|
||
sz = (224, 224) | ||
img = Images.load(guitar_path); | ||
img = imresize(img, sz); | ||
# CHW -> WHC | ||
data = permutedims(convert(Array{Float32}, channelview(img)), (3,2,1)) | ||
data = normalize(data[:,:,:,1:1]) | ||
|
||
out = model(data) |> softmax; | ||
out = out[:,1] | ||
|
||
println(" Flux:") | ||
|
||
for i in sortperm(out,rev=true)[1:5] | ||
println(" $(labels[i]): $(out[i])") | ||
end | ||
|
||
|
||
pytorchmodel.eval() | ||
output = pytorchmodel(torch.Tensor(tr(data))); | ||
probabilities = torch.nn.functional.softmax(output[0], dim=0).detach().numpy(); | ||
|
||
println(" PyTorch:") | ||
|
||
for i in sortperm(probabilities[:,1],rev=true)[1:5] | ||
println(" $(labels[i]): $(probabilities[i])") | ||
end | ||
|
||
@test maximum(out) ≈ maximum(probabilities) | ||
@test argmax(out) ≈ argmax(probabilities) | ||
|
||
println() | ||
end |