-
-
Notifications
You must be signed in to change notification settings - Fork 24
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* destructure, take II * add a test * tidy * replace append! with reduce(vcat, ...) * testset names * rename everything * tweak * two broken tests * make len positional, fix a bug * second derivatives * arrays of arrays * more... the dimensionmismatch bug is not here * warnings
- Loading branch information
Showing
8 changed files
with
341 additions
and
9 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,152 @@ | ||
|
||
using ChainRulesCore: ChainRulesCore, NoTangent, ProjectTo, unthunk | ||
const NoT = NoTangent() | ||
|
||
""" | ||
destructure(model) -> vector, reconstructor | ||
Copies all [`trainable`](@ref), [`isnumeric`](@ref) parameters in the model | ||
to a vector, and returns also a function which reverses this transformation. | ||
Differentiable. | ||
# Example | ||
```jldoctest | ||
julia> v, re = destructure((x=[1.0, 2.0], y=(sin, [3 + 4im]))) | ||
(ComplexF64[1.0 + 0.0im, 2.0 + 0.0im, 3.0 + 4.0im], Restructure(NamedTuple, ..., 3)) | ||
julia> re([3, 5-im, 7+11im]) | ||
(x = [3.0, 5.0], y = (sin, ComplexF64[7.0 + 11.0im])) | ||
``` | ||
""" | ||
function destructure(x) | ||
flat, off, len = _flatten(x) | ||
flat, Restructure(x, off, len) | ||
end | ||
|
||
""" | ||
Restructure(Model, ..., length) | ||
This is what [`destructure`](@ref) returns, and `re(p)` will re-build the model with | ||
new parameters from vector `p`. If the model is callable, then `re(x, p) == re(p)(x)`. | ||
# Example | ||
```julia | ||
julia> using Flux, Optimisers | ||
julia> _, re = destructure(Dense([1 2; 3 4], [0, 0], sigmoid)) | ||
([1, 3, 2, 4, 0, 0], Restructure(Dense, ..., 6)) | ||
julia> m = re(-4:1) | ||
Dense(2, 2, σ) # 6 parameters | ||
julia> m([0.2, 0.3]) ≈ re([0.2, 0.3], -4:1) | ||
true | ||
``` | ||
""" | ||
struct Restructure{T,S} | ||
model::T | ||
offsets::S | ||
length::Int | ||
end | ||
(re::Restructure)(flat::AbstractVector) = _rebuild(re.model, re.offsets, flat, re.length) | ||
(re::Restructure)(x, flat::AbstractVector) = re(flat)(x) | ||
Base.show(io::IO, re::Restructure{T}) where T = print(io, "Restructure(", T.name.name, ", ..., ", re.length, ")") | ||
Base.length(re::Restructure) = re.length | ||
|
||
# This flattens a model, and returns a web of offsets for later use: | ||
function _flatten(x) | ||
isnumeric(x) && return vcat(_vec(x)), 0, length(x) # trivial case | ||
arrays = AbstractVector[] | ||
len = Ref(0) | ||
off = fmap(x; exclude = isnumeric, walk = (f, z) -> map(f, _trainable(z))) do y | ||
push!(arrays, _vec(y)) | ||
o = len[] | ||
len[] = o + length(y) | ||
o | ||
end | ||
reduce(vcat, arrays), off, len[] | ||
end | ||
|
||
_vec(x::Number) = LinRange(x,x,1) | ||
_vec(x::AbstractArray) = vec(x) | ||
|
||
function ChainRulesCore.rrule(::typeof(_flatten), x) | ||
flat, off, len = _flatten(x) | ||
_maybewarn() | ||
_flatten_back((dflat, _, _)) = (NoT, _rebuild(x, off, unthunk(dflat), len; walk = _Tangent_biwalk, prune = NoT)) | ||
(flat, off, len), _flatten_back | ||
end | ||
|
||
# This reconstructs either a model like x, or a gradient for it: | ||
function _rebuild(x, off, flat::AbstractVector, len = length(flat); walk = _trainable_biwalk, kw...) | ||
len == length(flat) || throw(DimensionMismatch("Rebuild expected a vector of length $len, got $(length(flat))")) | ||
fmap(x, off; exclude = isnumeric, walk, kw...) do y, o | ||
_getat(y, o, flat) | ||
end | ||
end | ||
|
||
_getat(y::Number, o::Int, flat::AbstractVector) = ProjectTo(y)(flat[o + 1]) | ||
_getat(y::AbstractArray, o::Int, flat::AbstractVector) = | ||
ProjectTo(y)(reshape(flat[o .+ (1:length(y))], axes(y))) # ProjectTo is just correcting eltypes | ||
|
||
function _trainable_biwalk(f, x, aux) | ||
ch, re = functor(typeof(x), x) | ||
au, _ = functor(typeof(x), aux) | ||
_trainmap(f, ch, _trainable(x), au) |> re | ||
end | ||
|
||
function _trainmap(f, ch, tr, aux) | ||
map(ch, tr, aux) do c, t, a # isnothing(t) indicates non-trainable field, safe given isnumeric(c) | ||
isnothing(t) ? c : f(t, a) | ||
end | ||
end | ||
|
||
function _Tangent_biwalk(f, x, aux) # use with prune = NoT | ||
ch, re = functor(typeof(x), x) | ||
au, _ = functor(typeof(x), aux) | ||
y = _trainmap(f, ch, _trainable(x), au) | ||
y isa Tuple{} && return NoT | ||
p = ProjectTo(x) | ||
if p isa ProjectTo # e.g. Array, NamedTuple | ||
p(y) | ||
else # p === identity for unknown structs | ||
Tangent{typeof(x), typeof(y)}(y) | ||
end | ||
end | ||
|
||
function ChainRulesCore.rrule(::typeof(_rebuild), x, off, flat, len; kw...) | ||
_rebuild_back(dx) = (NoT, NoT, NoT, _grad!(x, unthunk(dx), off, _zero(flat)), NoT) | ||
_rebuild(x, off, flat, len; kw...), _rebuild_back | ||
end | ||
|
||
_zero(x) = map!(zero, similar(x, float(eltype(x))), x) # mutable zero array for _grad! | ||
ChainRulesCore.@non_differentiable _zero(x) | ||
|
||
# This is the gradient of model reconstruction, accumulating duplicates: | ||
function _grad!(x, dx, off, flat::AbstractVector) | ||
x′, _ = functor(typeof(x), x) | ||
dx′, _ = functor(typeof(x), base(dx)) | ||
off′, _ = functor(typeof(x), off) | ||
foreach((xᵢ, dxᵢ, oᵢ) -> _grad!(xᵢ, dxᵢ, oᵢ, flat), x′, dx′, off′) | ||
flat | ||
end | ||
function _grad!(x, dx, off::Integer, flat::AbstractVector) | ||
@views flat[off .+ (1:length(x))] .+= dx # must visit all tied nodes | ||
flat | ||
end | ||
_grad!(x, dx::Zero, off, flat::AbstractVector) = dx | ||
_grad!(x, dx::Zero, off::Integer, flat::AbstractVector) = dx # ambiguity | ||
|
||
# These are only needed for 2nd derivatives: | ||
function ChainRulesCore.rrule(::typeof(_grad!), x, dx, off, flat) | ||
@warn "second derivatives of Restructure may not work yet, sorry!" maxlog=3 | ||
_grad_back(dflat) = (NoT, NoT, _rebuild(x, off, unthunk(dflat); walk = _Tangent_biwalk, prune = NoT), NoT, NoT) | ||
_grad!(x, dx, off, flat), _grad_back | ||
end | ||
base(dx::Tangent{<:Tangent}) = backing(dx).backing # might be needed for gradient(gradient(destructure)) | ||
base(dx::Tangent{Any, <:NamedTuple{(:backing,)}}) = base(backing(dx).backing) # Zygote version | ||
_maybewarn() = nothing | ||
function ChainRulesCore.rrule(::typeof(_maybewarn)) | ||
@warn "second derivatives of destructure may not work yet, sorry!" maxlog=3 | ||
nothing, _ -> (NoT,) | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,166 @@ | ||
|
||
m1 = collect(1:3.0) | ||
m2 = (collect(1:3.0), collect(4:6.0)) | ||
m3 = (x = m1, y = sin, z = collect(4:6.0)) | ||
m4 = (x = m1, y = m1, z = collect(4:6.0)) # tied | ||
m5 = (a = (m3, true), b = (m1, false), c = (m4, true)) | ||
m6 = (a = m1, b = [4.0 + im], c = m1) | ||
m7 = TwoThirds((sin, collect(1:3.0)), (cos, collect(4:6.0)), (tan, collect(7:9.0))) | ||
m8 = [Foo(m1, m1), (a = true, b = Foo([4.0], false), c = ()), [[5.0]]] | ||
|
||
@testset "flatten & rebuild" begin | ||
@test destructure(m1)[1] isa Vector{Float64} | ||
@test destructure(m1)[1] == 1:3 | ||
@test destructure(m2)[1] == 1:6 | ||
@test destructure(m3)[1] == 1:6 | ||
@test destructure(m4)[1] == 1:6 | ||
@test destructure(m5)[1] == vcat(1:6, 4:6) | ||
@test destructure(m6)[1] == vcat(1:3, 4 + im) | ||
|
||
@test destructure(m1)[2](7:9) == [7,8,9] | ||
@test destructure(m2)[2](4:9) == ([4,5,6], [7,8,9]) | ||
@test destructure(m3)[2](4:9) == (x = [4,5,6], y = sin, z = [7,8,9]) | ||
m4′ = destructure(m4)[2](4:9) | ||
@test m4′ == (x = [4,5,6], y = [4,5,6], z = [7,8,9]) | ||
@test m4′.x === m4′.y | ||
m5′ = destructure(m5)[2](reverse(1:9)) | ||
@test m5′.a[1].x === m5′.b[1] | ||
@test m5′.b[2] === false | ||
m6′ = destructure(m6)[2]((4:7) .+ (1:4) .* im) | ||
@test m6′.a isa Vector{Float64} | ||
@test m6′.a == 4:6 | ||
@test m6′.a === m6′.c | ||
@test m6′.b == [7 + 4im] | ||
|
||
# struct, trainable | ||
@test destructure(m7)[1] == 1:3 | ||
m7′ = destructure(m7)[2]([10,20,30]) | ||
@test m7′.a == (sin, [10,20,30]) | ||
@test m7′.b == (cos, [4,5,6]) | ||
@test m7′.c == (tan, [7,8,9]) | ||
|
||
@test destructure(m8)[1] == 1:5 | ||
m8′ = destructure(m8)[2](1:5) | ||
@test m8′[1].x === m8′[1].y | ||
@test m8′[2].b.y === false | ||
@test m8′[3][1] == [5.0] | ||
|
||
# errors | ||
@test_throws Exception destructure(m7)[2]([10,20]) | ||
@test_throws Exception destructure(m7)[2]([10,20,30,40]) | ||
end | ||
|
||
@testset "gradient of flatten" begin | ||
@test gradient(m -> destructure(m)[1][1], m1)[1] == [1,0,0] | ||
@test gradient(m -> destructure(m)[1][2], m2)[1] == ([0,1,0], [0,0,0]) | ||
@test gradient(m -> destructure(m)[1][3], (m1, m1))[1] == ([0,0,1], nothing) | ||
@test gradient(m -> destructure(m)[1][1], m3)[1] == (x = [1,0,0], y = nothing, z = [0,0,0]) | ||
@test gradient(m -> destructure(m)[1][2], m4)[1] == (x = [0,1,0], y = nothing, z = [0,0,0]) | ||
|
||
g5 = gradient(m -> destructure(m)[1][3], m5)[1] | ||
@test g5.a[1].x == [0,0,1] | ||
@test g5.a[2] === nothing | ||
|
||
g6 = gradient(m -> imag(destructure(m)[1][4]), m6)[1] | ||
@test g6.a == [0,0,0] | ||
@test g6.a isa Vector{Float64} | ||
@test g6.b == [0+im] | ||
|
||
g8 = gradient(m -> sum(abs2, destructure(m)[1]), m8)[1] | ||
@test g8[1].x == [2,4,6] | ||
@test g8[2].b.x == [8] | ||
@test g8[3] == [[10.0]] | ||
|
||
@testset "second derivative" begin | ||
@test gradient([1,2,3.0]) do v | ||
sum(abs2, gradient(m -> sum(abs2, destructure(m)[1]), (v, [4,5,6.0]))[1][1]) | ||
end[1] ≈ [8,16,24] | ||
# With Diffractor, non-leaf _grad!(x, dx, off, flat::AbstractVector) gets double-wrapped dx: | ||
# off = (0, 3), dx = Tangent{Tangent{Tuple{Vector{Float64}, Vector{Float64}}, ... | ||
# until you add explicit double-unwrap: base(dx::Tangent{<:Tangent}) = backing(dx).backing | ||
# With Zygote, instead: | ||
# dx = Tangent{Any}(backing = Tangent{Any}([4.0, 8.0, 12.0], ZeroTangent()),) | ||
|
||
@test gradient([1,2,3.0]) do v | ||
sum(gradient(m -> sum(destructure(m)[1])^3, (v, [4,5,6.0]))[1][1]) | ||
end[1] == [378, 378, 378] | ||
|
||
@test_broken gradient([1,2,3.0]) do v | ||
sum(abs2, gradient(m -> sum(abs2, destructure(m)[1]), (x = v, y = sin, z = [4,5,6.0]))[1][1]) | ||
end[1] ≈ [8,16,24] | ||
# Zygote error in (::typeof(∂(canonicalize)))(Δ::NamedTuple{(:backing,), Tuple{NamedTuple{(:x, :y, :z) | ||
# Diffractor error in perform_optic_transform | ||
end | ||
end | ||
|
||
@testset "gradient of rebuild" begin | ||
re1 = destructure(m1)[2] | ||
@test gradient(x -> re1(x)[1], rand(3))[1] == [1,0,0] | ||
re2 = destructure(m2)[2] | ||
@test gradient(x -> re2(x)[1][2], rand(6))[1] == [0,1,0,0,0,0] | ||
re3 = destructure(m3)[2] | ||
@test gradient(x -> re3(x).x[3], rand(6))[1] == [0,0,1,0,0,0] | ||
@test gradient(x -> re3(x).z[1], rand(6))[1] == [0,0,0,1,0,0] | ||
|
||
re4 = destructure(m4)[2] | ||
@test gradient(x -> re4(x).x[1], rand(6))[1] == [1,0,0,0,0,0] | ||
@test gradient(x -> re4(x).y[2], rand(6))[1] == [0,1,0,0,0,0] | ||
@test gradient(rand(6)) do x | ||
m = re4(x) | ||
m.x[1] + 2*m.y[2] + 3*m.z[3] | ||
end[1] == [1,2,0, 0,0,3] | ||
|
||
re7 = destructure(m7)[2] | ||
@test gradient(x -> re7(x).a[2][3], rand(3))[1] == [0,0,1] | ||
@test gradient(x -> re7(x).b[2][2], rand(3))[1] == [0,0,0] | ||
@test gradient(x -> re7(x).c[2][1], rand(3))[1] == [0,0,0] | ||
|
||
v8, re8 = destructure(m8) | ||
@test gradient(x -> sum(abs2, re8(x)[1].y), v8)[1] == [2,4,6,0,0] | ||
@test gradient(x -> only(sum(re8(x)[3]))^2, v8)[1] == [0,0,0,0,10] | ||
|
||
@testset "second derivative" begin | ||
@test_broken gradient(collect(1:6.0)) do y | ||
sum(abs2, gradient(x -> sum(abs2, re2(x)[1]), y)[1]) | ||
end[1] ≈ [8,16,24,0,0,0] | ||
# ERROR: Need an adjoint for constructor ChainRulesCore.Tangent{Any, Tuple{Vector{Float64}, ChainRulesCore.ZeroTangent}}. Gradient is of type Tuple{Vector{Float64}, Vector{Float64}} | ||
# with Zygote, which can be fixed by: | ||
# Zygote.@adjoint Tangent{T,B}(x::Tuple) where {T,B<:Tuple} = Tangent{T,B}(x), dx -> (dx,) | ||
|
||
@test_broken gradient(collect(1:6.0)) do y | ||
sum(abs2, gradient(x -> sum(abs2, re3(x).z), y)[1]) | ||
end[1] ≈ [0,0,0,32,40,48] | ||
# Not fixed by this: | ||
# Zygote.@adjoint Tangent{T,B}(x::NamedTuple) where {T,B<:NamedTuple} = Tangent{T,B}(x), dx -> (dx,) | ||
end | ||
end | ||
|
||
@testset "Flux issue 1826" begin | ||
v, re = destructure((x=[1,2.0], y=[3,4,5.0])) | ||
@test gradient(zero(v)) do w | ||
m = re(w) | ||
5 * sum(m.x) + 7 * sum(m[2]) # uses both x and y | ||
end == ([5.0, 5.0, 7.0, 7.0, 7.0],) | ||
# This, using only x, was broken on Flux: | ||
@test gradient(w -> sum(re(w).x), zero(v)) == ([1.0, 1.0, 0.0, 0.0, 0.0],) | ||
|
||
sh = [7,7.0]; | ||
v, re = destructure((x=sh, y=[3.0,4.0], z=sh)) # shared array in the model | ||
@test v == [7, 7, 3, 4] | ||
@test re([1,10,100,1000]) == (x = [1, 10], y = [100, 1000], z = [1, 10]) | ||
|
||
@test gradient(zero(v)) do w | ||
m = re(w) | ||
3 * sum(m.x) + 13 * sum(m.z) # no dependence on y, but two distinct gradient arrays | ||
end == ([16, 16, 0, 0],) # Flux gave ([3.0, 3.0, 13.0, 13.0],) | ||
|
||
@test gradient(zero(v)) do w | ||
m = re(w) | ||
4(sum(m.x) + sum(m.z)) # now two gradients are ===, so it eliminates one | ||
end == ([8,8,0,0],) | ||
|
||
@test gradient(zero(v)) do w | ||
m = re(w) | ||
4(sum(m.x) + sum(m.y)) + 13*sum(m.z) # again two gradients are ===, so it eliminates one | ||
end == ([17,17,4,4],) # Flux gave ([4.0, 4.0, 13.0, 13.0],) | ||
end |
Oops, something went wrong.