Skip to content

Commit

Permalink
Merge pull request #343 from mpudig/density_to_buoyancy
Browse files Browse the repository at this point in the history
Accepting buoyancy instead of density in `MultiLayerQG` module
  • Loading branch information
navidcy authored Dec 20, 2023
2 parents 6e9095c + cd22ddc commit 449f8be
Show file tree
Hide file tree
Showing 6 changed files with 75 additions and 75 deletions.
4 changes: 2 additions & 2 deletions Project.toml
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
name = "GeophysicalFlows"
uuid = "44ee3b1c-bc02-53fa-8355-8e347616e15e"
license = "MIT"
authors = ["Navid C. Constantinou <[email protected]>", "Gregory L. Wagner <[email protected]>", "and co-contributors"]
version = "0.15.4"
authors = ["Navid C. Constantinou <[email protected]>", "Gregory L. Wagner <[email protected]>", "and contributors"]
version = "0.16.0"

[deps]
CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba"
Expand Down
2 changes: 1 addition & 1 deletion docs/src/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -84,7 +84,7 @@ The bibtex entry for the paper is:

## Papers using `GeophysicalFlows.jl`

1. Drivas, T. D. and Elgindi, T. M. (2023). Singularity formation in the incompressible Euler equation in finite and infinite time. _EMS Surv. Math. Sci._, **10(1)**, 1–100, doi:[10.4171/emss/66](https://doi.org/10.4171/emss/66).
1. Drivas, T. D. and Elgindi, T. M. (2023). Singularity formation in the incompressible Euler equation in finite and infinite time. _EMS Surveys in Mathematical Sciences_, **10(1)**, 1–100, doi:[10.4171/emss/66](https://doi.org/10.4171/emss/66).

1. Parfenyev, V. (2023) Statistical analysis of vortex condensate motion in two-dimensional turbulence. arXiv preprint arXiv:2311.03065, doi:[10.48550/arXiv.2311.03065](https://doi.org/10.48550/arXiv.2311.03065).

Expand Down
12 changes: 10 additions & 2 deletions docs/src/modules/multilayerqg.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

### Basic Equations

This module solves the layered quasi-geostrophic equations on a beta plane of variable fluid
This module solves the layered Boussinesq quasi-geostrophic equations on a beta plane of variable fluid
depth ``H - h(x, y)``. The flow in each layer is obtained through a streamfunction ``\psi_j`` as
``(u_j, v_j) = (-\partial_y \psi_j, \partial_x \psi_j)``, ``j = 1, \dots, n``, where ``n``
is the number of fluid layers.
Expand All @@ -28,9 +28,17 @@ with

```math
F_{j+1/2, k} = \frac{f_0^2}{g'_{j+1/2} H_k} \quad \text{and} \quad
g'_{j+1/2} = g \frac{\rho_{j+1} - \rho_j}{\rho_{j+1}} .
g'_{j+1/2} = b_j - b_{j+1} ,
```

where

```math
b_{j} = - g \frac{\delta \rho_j}{\rho_0}
```

is the Boussinesq buoyancy in each layer, with ``\rho = \rho_0 + \delta \rho`` the total density, ``\rho_0`` a constant reference density, and ``|\delta \rho| \ll \rho_0`` the perturbation density.

In view of the relationships above, when we convert to Fourier space ``q``'s and ``\psi``'s are
related via the matrix equation

Expand Down
6 changes: 3 additions & 3 deletions examples/multilayerqg_2layer.jl
Original file line number Diff line number Diff line change
Expand Up @@ -43,9 +43,9 @@ L = 2π # domain size
β = 5 # the y-gradient of planetary PV

nlayers = 2 # number of layers
f₀, g = 1, 1 # Coriolis parameter and gravitational constant
f₀ = 1 # Coriolis parameter
H = [0.2, 0.8] # the rest depths of each layer
ρ = [4.0, 5.0] # the density of each layer
b = [-1.0, -1.2] # Boussinesq buoyancy of each layer

U = zeros(nlayers) # the imposed mean zonal flow in each layer
U[1] = 1.0
Expand All @@ -59,7 +59,7 @@ nothing #hide
# at every time-step that removes enstrophy at high wavenumbers and, thereby,
# stabilize the problem, despite that we use the default viscosity coefficient `ν=0`.

prob = MultiLayerQG.Problem(nlayers, dev; nx=n, Lx=L, f₀, g, H, ρ, U, μ, β,
prob = MultiLayerQG.Problem(nlayers, dev; nx=n, Lx=L, f₀, H, b, U, μ, β,
dt, stepper, aliased_fraction=0)
nothing #hide

Expand Down
45 changes: 19 additions & 26 deletions src/multilayerqg.jl
Original file line number Diff line number Diff line change
Expand Up @@ -35,10 +35,9 @@ nothingfunction(args...) = nothing
Ly = Lx,
f₀ = 1.0,
β = 0.0,
g = 1.0,
U = zeros(nlayers),
H = 1/nlayers * ones(nlayers),
ρ = Array{Float64}(1:nlayers),
b = -(1 .+ 1/nlayers * Array{Float64}(0:nlayers-1)),
eta = nothing,
topographic_pv_gradient = (0, 0),
μ = 0,
Expand Down Expand Up @@ -67,10 +66,9 @@ Keyword arguments
- `Ly`: Extent of the ``y``-domain.
- `f₀`: Constant planetary vorticity.
- `β`: Planetary vorticity ``y``-gradient.
- `g`: Gravitational acceleration constant.
- `U`: The imposed constant zonal flow ``U(y)`` in each fluid layer.
- `H`: Rest height of each fluid layer.
- `ρ`: Density of each fluid layer.
- `b`: Boussinesq buoyancy of each fluid layer.
- `eta`: Periodic component of the topographic potential vorticity.
- `topographic_pv_gradient`: The ``(x, y)`` components of the topographic PV large-scale gradient.
- `μ`: Linear bottom drag coefficient.
Expand All @@ -92,14 +90,13 @@ function Problem(nlayers::Int, # number of fluid lay
Lx = 2π,
Ly = Lx,
# Physical parameters
f₀ = 1.0, # Coriolis parameter
β = 0.0, # y-gradient of Coriolis parameter
g = 1.0, # gravitational constant
U = zeros(nlayers), # imposed zonal flow U(y) in each layer
H = 1/nlayers * ones(nlayers), # rest fluid height of each layer
ρ = Array{Float64}(1:nlayers), # density of each layer
eta = nothing, # periodic component of the topographic PV
topographic_pv_gradient = (0, 0), # tuple with the ``(x, y)`` components of topographic PV large-scale gradient
f₀ = 1.0, # Coriolis parameter
β = 0.0, # y-gradient of Coriolis parameter
U = zeros(nlayers), # imposed zonal flow U(y) in each layer
H = 1/nlayers * ones(nlayers), # rest fluid height of each layer
b = -(1 .+ 1/nlayers * Array{Float64}(0:nlayers-1)), # Boussinesq buoyancy of each layer
eta = nothing, # periodic component of the topographic PV
topographic_pv_gradient = (0, 0), # tuple with the ``(x, y)`` components of topographic PV large-scale gradient
# Bottom Drag and/or (hyper)-viscosity
μ = 0,
ν = 0,
Expand Down Expand Up @@ -137,7 +134,7 @@ function Problem(nlayers::Int, # number of fluid lay

grid = TwoDGrid(dev; nx, Lx, ny, Ly, aliased_fraction, T)

params = Params(nlayers, g, f₀, β, ρ, H, U, eta, topographic_pv_gradient, μ, ν, nν, grid; calcFq)
params = Params(nlayers, f₀, β, b, H, U, eta, topographic_pv_gradient, μ, ν, nν, grid; calcFq)

vars = calcFq == nothingfunction ? DecayingVars(grid, params) : (stochastic ? StochasticForcedVars(grid, params) : ForcedVars(grid, params))

Expand All @@ -157,14 +154,12 @@ struct Params{T, Aphys3D, Aphys2D, Atrans4D, Trfft} <: AbstractParams
# prescribed params
"number of fluid layers"
nlayers :: Int
"gravitational constant"
g :: T
"constant planetary vorticity"
f₀ :: T
"planetary vorticity ``y``-gradient"
β :: T
"array with density of each fluid layer"
ρ :: Tuple
"array with Boussinesq buoyancy of each fluid layer"
b :: Tuple
"array with rest height of each fluid layer"
H :: Tuple
"array with imposed constant zonal flow ``U(y)`` in each fluid layer"
Expand Down Expand Up @@ -241,14 +236,12 @@ $(TYPEDFIELDS)
"""
struct TwoLayerParams{T, Aphys3D, Aphys2D, Trfft} <: AbstractParams
# prescribed params
"gravitational constant"
g :: T
"constant planetary vorticity"
f₀ :: T
"planetary vorticity ``y``-gradient"
β :: T
"array with density of each fluid layer"
ρ :: Tuple
"array with Boussinesq buoyancy of each fluid layer"
b :: Tuple
"tuple with rest height of each fluid layer"
H :: Tuple
"array with imposed constant zonal flow ``U(y)`` in each fluid layer"
Expand Down Expand Up @@ -311,7 +304,7 @@ function convert_U_to_U3D(dev, nlayers, grid, U::Number)
return A(U_3D)
end

function Params(nlayers::Int, g, f₀, β, ρ, H, U, eta, topographic_pv_gradient, μ, ν, nν, grid::TwoDGrid; calcFq=nothingfunction, effort=FFTW.MEASURE)
function Params(nlayers::Int, f₀, β, b, H, U, eta, topographic_pv_gradient, μ, ν, nν, grid::TwoDGrid; calcFq=nothingfunction, effort=FFTW.MEASURE)
dev = grid.device
T = eltype(grid)
A = device_array(dev)
Expand Down Expand Up @@ -349,10 +342,10 @@ function Params(nlayers::Int, g, f₀, β, ρ, H, U, eta, topographic_pv_gradien

else # if nlayers≥2

ρ = reshape(T.(ρ), (1, 1, nlayers))
b = reshape(T.(b), (1, 1, nlayers))
H = Tuple(T.(H))

g′ = T(g) * (ρ[2:nlayers] - ρ[1:nlayers-1]) ./ ρ[2:nlayers] # reduced gravity at each interface
g′ = b[1:nlayers-1] - b[2:nlayers] # reduced gravity at each interface

Fm = @. T(f₀^2 / (g′ * H[2:nlayers]))
Fp = @. T(f₀^2 / (g′ * H[1:nlayers-1]))
Expand All @@ -374,9 +367,9 @@ function Params(nlayers::Int, g, f₀, β, ρ, H, U, eta, topographic_pv_gradien
CUDA.@allowscalar @views Qy[:, :, nlayers] = @. Qy[:, :, nlayers] - Fm[nlayers-1] * (U[:, :, nlayers-1] - U[:, :, nlayers])

if nlayers==2
return TwoLayerParams(T(g), T(f₀), T(β), Tuple(T.(ρ)), Tuple(T.(H)), U, eta, topographic_pv_gradient, T(μ), T(ν), nν, calcFq, T(g′[1]), Qx, Qy, rfftplanlayered)
return TwoLayerParams(T(f₀), T(β), Tuple(T.(b)), Tuple(T.(H)), U, eta, topographic_pv_gradient, T(μ), T(ν), nν, calcFq, T(g′[1]), Qx, Qy, rfftplanlayered)
else # if nlayers>2
return Params(nlayers, T(g), T(f₀), T(β), Tuple(T.(ρ)), T.(H), U, eta, topographic_pv_gradient, T(μ), T(ν), nν, calcFq, Tuple(T.(g′)), Qx, Qy, S, S⁻¹, rfftplanlayered)
return Params(nlayers, T(f₀), T(β), Tuple(T.(b)), T.(H), U, eta, topographic_pv_gradient, T(μ), T(ν), nν, calcFq, Tuple(T.(g′)), Qx, Qy, S, S⁻¹, rfftplanlayered)
end
end
end
Expand Down
Loading

2 comments on commit 449f8be

@navidcy
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@JuliaRegistrator
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Registration pull request created: JuliaRegistries/General/97460

Tip: Release Notes

Did you know you can add release notes too? Just add markdown formatted text underneath the comment after the text
"Release notes:" and it will be added to the registry PR, and if TagBot is installed it will also be added to the
release that TagBot creates. i.e.

@JuliaRegistrator register

Release notes:

## Breaking changes

- blah

To add them here just re-invoke and the PR will be updated.

Tagging

After the above pull request is merged, it is recommended that a tag is created on this repository for the registered package version.

This will be done automatically if the Julia TagBot GitHub Action is installed, or can be done manually through the github interface, or via:

git tag -a v0.16.0 -m "<description of version>" 449f8be340d3a5b4f6b7da4f6ac53fef7dd2fc55
git push origin v0.16.0

Please sign in to comment.