Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Accepting buoyancy instead of density in MultiLayerQG module #343

Merged
merged 8 commits into from
Dec 20, 2023
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions Project.toml
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
name = "GeophysicalFlows"
uuid = "44ee3b1c-bc02-53fa-8355-8e347616e15e"
license = "MIT"
authors = ["Navid C. Constantinou <[email protected]>", "Gregory L. Wagner <[email protected]>", "and co-contributors"]
version = "0.15.4"
authors = ["Navid C. Constantinou <[email protected]>", "Gregory L. Wagner <[email protected]>", "and contributors"]
version = "0.16.0"

[deps]
CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba"
Expand Down
2 changes: 1 addition & 1 deletion docs/src/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -84,7 +84,7 @@ The bibtex entry for the paper is:

## Papers using `GeophysicalFlows.jl`

1. Drivas, T. D. and Elgindi, T. M. (2023). Singularity formation in the incompressible Euler equation in finite and infinite time. _EMS Surv. Math. Sci._, **10(1)**, 1–100, doi:[10.4171/emss/66](https://doi.org/10.4171/emss/66).
1. Drivas, T. D. and Elgindi, T. M. (2023). Singularity formation in the incompressible Euler equation in finite and infinite time. _EMS Surveys in Mathematical Sciences_, **10(1)**, 1–100, doi:[10.4171/emss/66](https://doi.org/10.4171/emss/66).

1. Parfenyev, V. (2023) Statistical analysis of vortex condensate motion in two-dimensional turbulence. arXiv preprint arXiv:2311.03065, doi:[10.48550/arXiv.2311.03065](https://doi.org/10.48550/arXiv.2311.03065).

Expand Down
12 changes: 10 additions & 2 deletions docs/src/modules/multilayerqg.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

### Basic Equations

This module solves the layered quasi-geostrophic equations on a beta plane of variable fluid
This module solves the layered Boussinesq quasi-geostrophic equations on a beta plane of variable fluid
depth ``H - h(x, y)``. The flow in each layer is obtained through a streamfunction ``\psi_j`` as
``(u_j, v_j) = (-\partial_y \psi_j, \partial_x \psi_j)``, ``j = 1, \dots, n``, where ``n``
is the number of fluid layers.
Expand All @@ -28,9 +28,17 @@ with

```math
F_{j+1/2, k} = \frac{f_0^2}{g'_{j+1/2} H_k} \quad \text{and} \quad
g'_{j+1/2} = g \frac{\rho_{j+1} - \rho_j}{\rho_{j+1}} .
g'_{j+1/2} = b_j - b_{j+1} ,
```

where

```math
b_{j} = - g \frac{\delta \rho_j}{\rho_0}
```

is the Boussinesq buoyancy in each layer, with ``\rho = \rho_0 + \delta \rho`` the total density, ``\rho_0`` a constant reference density, and ``|\delta \rho| \ll \rho_0`` the perturbation density.

In view of the relationships above, when we convert to Fourier space ``q``'s and ``\psi``'s are
related via the matrix equation

Expand Down
6 changes: 3 additions & 3 deletions examples/multilayerqg_2layer.jl
Original file line number Diff line number Diff line change
Expand Up @@ -43,9 +43,9 @@ L = 2π # domain size
β = 5 # the y-gradient of planetary PV

nlayers = 2 # number of layers
f₀, g = 1, 1 # Coriolis parameter and gravitational constant
f₀ = 1 # Coriolis parameter
H = [0.2, 0.8] # the rest depths of each layer
ρ = [4.0, 5.0] # the density of each layer
b = [-1.0, -1.2] # Boussinesq buoyancy of each layer

U = zeros(nlayers) # the imposed mean zonal flow in each layer
U[1] = 1.0
Expand All @@ -59,7 +59,7 @@ nothing #hide
# at every time-step that removes enstrophy at high wavenumbers and, thereby,
# stabilize the problem, despite that we use the default viscosity coefficient `ν=0`.

prob = MultiLayerQG.Problem(nlayers, dev; nx=n, Lx=L, f₀, g, H, ρ, U, μ, β,
prob = MultiLayerQG.Problem(nlayers, dev; nx=n, Lx=L, f₀, H, b, U, μ, β,
dt, stepper, aliased_fraction=0)
nothing #hide

Expand Down
45 changes: 19 additions & 26 deletions src/multilayerqg.jl
Original file line number Diff line number Diff line change
Expand Up @@ -35,10 +35,9 @@ nothingfunction(args...) = nothing
Ly = Lx,
f₀ = 1.0,
β = 0.0,
g = 1.0,
U = zeros(nlayers),
H = 1/nlayers * ones(nlayers),
ρ = Array{Float64}(1:nlayers),
b = -(1 .+ 1/nlayers * Array{Float64}(0:nlayers-1)),
eta = nothing,
topographic_pv_gradient = (0, 0),
μ = 0,
Expand Down Expand Up @@ -67,10 +66,9 @@ Keyword arguments
- `Ly`: Extent of the ``y``-domain.
- `f₀`: Constant planetary vorticity.
- `β`: Planetary vorticity ``y``-gradient.
- `g`: Gravitational acceleration constant.
- `U`: The imposed constant zonal flow ``U(y)`` in each fluid layer.
- `H`: Rest height of each fluid layer.
- `ρ`: Density of each fluid layer.
- `b`: Boussinesq buoyancy of each fluid layer.
- `eta`: Periodic component of the topographic potential vorticity.
- `topographic_pv_gradient`: The ``(x, y)`` components of the topographic PV large-scale gradient.
- `μ`: Linear bottom drag coefficient.
Expand All @@ -92,14 +90,13 @@ function Problem(nlayers::Int, # number of fluid lay
Lx = 2π,
Ly = Lx,
# Physical parameters
f₀ = 1.0, # Coriolis parameter
β = 0.0, # y-gradient of Coriolis parameter
g = 1.0, # gravitational constant
U = zeros(nlayers), # imposed zonal flow U(y) in each layer
H = 1/nlayers * ones(nlayers), # rest fluid height of each layer
ρ = Array{Float64}(1:nlayers), # density of each layer
eta = nothing, # periodic component of the topographic PV
topographic_pv_gradient = (0, 0), # tuple with the ``(x, y)`` components of topographic PV large-scale gradient
f₀ = 1.0, # Coriolis parameter
β = 0.0, # y-gradient of Coriolis parameter
U = zeros(nlayers), # imposed zonal flow U(y) in each layer
H = 1/nlayers * ones(nlayers), # rest fluid height of each layer
b = -(1 .+ 1/nlayers * Array{Float64}(0:nlayers-1)), # Boussinesq buoyancy of each layer
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

any reasoning behind this default b?

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

is this what corresponds to the previous default ρ?

Copy link
Member

@navidcy navidcy Dec 19, 2023

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think the two coincide if ρ0 = ρ[n], right?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

For the two-layer model this choice of default $b$ will give the same reduced gravity as the previous default $\rho$ did. I chose this as the default $b$ as I believe it's consistent with QG scalings.

eta = nothing, # periodic component of the topographic PV
topographic_pv_gradient = (0, 0), # tuple with the ``(x, y)`` components of topographic PV large-scale gradient
# Bottom Drag and/or (hyper)-viscosity
μ = 0,
ν = 0,
Expand Down Expand Up @@ -137,7 +134,7 @@ function Problem(nlayers::Int, # number of fluid lay

grid = TwoDGrid(dev; nx, Lx, ny, Ly, aliased_fraction, T)

params = Params(nlayers, g, f₀, β, ρ, H, U, eta, topographic_pv_gradient, μ, ν, nν, grid; calcFq)
params = Params(nlayers, f₀, β, b, H, U, eta, topographic_pv_gradient, μ, ν, nν, grid; calcFq)

vars = calcFq == nothingfunction ? DecayingVars(grid, params) : (stochastic ? StochasticForcedVars(grid, params) : ForcedVars(grid, params))

Expand All @@ -157,14 +154,12 @@ struct Params{T, Aphys3D, Aphys2D, Atrans4D, Trfft} <: AbstractParams
# prescribed params
"number of fluid layers"
nlayers :: Int
"gravitational constant"
g :: T
"constant planetary vorticity"
f₀ :: T
"planetary vorticity ``y``-gradient"
β :: T
"array with density of each fluid layer"
ρ :: Tuple
"array with Boussinesq buoyancy of each fluid layer"
b :: Tuple
"array with rest height of each fluid layer"
H :: Tuple
"array with imposed constant zonal flow ``U(y)`` in each fluid layer"
Expand Down Expand Up @@ -241,14 +236,12 @@ $(TYPEDFIELDS)
"""
struct TwoLayerParams{T, Aphys3D, Aphys2D, Trfft} <: AbstractParams
# prescribed params
"gravitational constant"
g :: T
"constant planetary vorticity"
f₀ :: T
"planetary vorticity ``y``-gradient"
β :: T
"array with density of each fluid layer"
ρ :: Tuple
"array with Boussinesq buoyancy of each fluid layer"
b :: Tuple
"tuple with rest height of each fluid layer"
H :: Tuple
"array with imposed constant zonal flow ``U(y)`` in each fluid layer"
Expand Down Expand Up @@ -311,7 +304,7 @@ function convert_U_to_U3D(dev, nlayers, grid, U::Number)
return A(U_3D)
end

function Params(nlayers::Int, g, f₀, β, ρ, H, U, eta, topographic_pv_gradient, μ, ν, nν, grid::TwoDGrid; calcFq=nothingfunction, effort=FFTW.MEASURE)
function Params(nlayers::Int, f₀, β, b, H, U, eta, topographic_pv_gradient, μ, ν, nν, grid::TwoDGrid; calcFq=nothingfunction, effort=FFTW.MEASURE)
dev = grid.device
T = eltype(grid)
A = device_array(dev)
Expand Down Expand Up @@ -349,10 +342,10 @@ function Params(nlayers::Int, g, f₀, β, ρ, H, U, eta, topographic_pv_gradien

else # if nlayers≥2

ρ = reshape(T.(ρ), (1, 1, nlayers))
b = reshape(T.(b), (1, 1, nlayers))
H = Tuple(T.(H))

g′ = T(g) * (ρ[2:nlayers] - ρ[1:nlayers-1]) ./ ρ[2:nlayers] # reduced gravity at each interface
g′ = b[1:nlayers-1] - b[2:nlayers] # reduced gravity at each interface

Fm = @. T(f₀^2 / (g′ * H[2:nlayers]))
Fp = @. T(f₀^2 / (g′ * H[1:nlayers-1]))
Expand All @@ -374,9 +367,9 @@ function Params(nlayers::Int, g, f₀, β, ρ, H, U, eta, topographic_pv_gradien
CUDA.@allowscalar @views Qy[:, :, nlayers] = @. Qy[:, :, nlayers] - Fm[nlayers-1] * (U[:, :, nlayers-1] - U[:, :, nlayers])

if nlayers==2
return TwoLayerParams(T(g), T(f₀), T(β), Tuple(T.(ρ)), Tuple(T.(H)), U, eta, topographic_pv_gradient, T(μ), T(ν), nν, calcFq, T(g′[1]), Qx, Qy, rfftplanlayered)
return TwoLayerParams(T(f₀), T(β), Tuple(T.(b)), Tuple(T.(H)), U, eta, topographic_pv_gradient, T(μ), T(ν), nν, calcFq, T(g′[1]), Qx, Qy, rfftplanlayered)
else # if nlayers>2
return Params(nlayers, T(g), T(f₀), T(β), Tuple(T.(ρ)), T.(H), U, eta, topographic_pv_gradient, T(μ), T(ν), nν, calcFq, Tuple(T.(g′)), Qx, Qy, S, S⁻¹, rfftplanlayered)
return Params(nlayers, T(f₀), T(β), Tuple(T.(b)), T.(H), U, eta, topographic_pv_gradient, T(μ), T(ν), nν, calcFq, Tuple(T.(g′)), Qx, Qy, S, S⁻¹, rfftplanlayered)
end
end
end
Expand Down
78 changes: 39 additions & 39 deletions test/test_multilayerqg.jl
Original file line number Diff line number Diff line change
Expand Up @@ -130,11 +130,11 @@ function test_pvtofromstreamfunction_2layer(dev::Device=CPU())
gr = TwoDGrid(dev; nx=n, Lx=L)

nlayers = 2 # these choice of parameters give the
f₀, g = 1, 1 # desired PV-streamfunction relations
f₀ = 1 # desired PV-streamfunction relations
H = [0.2, 0.8] # q1 = Δψ1 + 25*(ψ2-ψ1), and
ρ = [4.0, 5.0] # q2 = Δψ2 + 25/4*(ψ1-ψ2).
b = [-1.0, -1.2] # q2 = Δψ2 + 25/4*(ψ1-ψ2).

prob = MultiLayerQG.Problem(nlayers, dev; nx=n, Lx=L, f₀, g, H, ρ)
prob = MultiLayerQG.Problem(nlayers, dev; nx=n, Lx=L, f₀, H, b)
sol, cl, pr, vs, gr = prob.sol, prob.clock, prob.params, prob.vars, prob.grid

ψ1, ψ2, q1, q2, ψ1x, ψ2x, q1x, q2x, Δψ2, Δq1, Δq2 = constructtestfields_2layer(gr)
Expand Down Expand Up @@ -172,13 +172,13 @@ function test_pvtofromstreamfunction_3layer(dev::Device=CPU())
n, L = 128, 2π
gr = TwoDGrid(dev; nx=n, Lx=L)

nlayers = 3 # these choice of parameters give the
f₀, g = 1, 1 # desired PV-streamfunction relations
H = [0.25, 0.25, 0.5] # q1 = Δψ1 + 20ψ2 - 20ψ1,
ρ = [4.0, 5.0, 6.0] # q2 = Δψ2 + 20ψ1 - 44ψ2 + 24ψ3,
# q3 = Δψ3 + 12ψ2 - 12ψ3.
nlayers = 3 # these choice of parameters give the
f₀ = 1 # desired PV-streamfunction relations
H = [0.25, 0.25, 0.5] # q1 = Δψ1 + 20ψ2 - 20ψ1,
b = [-1.0, -1.2, -1.2-1/6] # q2 = Δψ2 + 20ψ1 - 44ψ2 + 24ψ3,
# q3 = Δψ3 + 12ψ2 - 12ψ3.

prob = MultiLayerQG.Problem(nlayers, dev; nx=n, Lx=L, f₀, g, H, ρ)
prob = MultiLayerQG.Problem(nlayers, dev; nx=n, Lx=L, f₀, H, b)
sol, cl, pr, vs, gr = prob.sol, prob.clock, prob.params, prob.vars, prob.grid

ψ1, ψ2, ψ3, q1, q2, q3, ψ1x, ψ2x, ψ3x, q1x, q2x, q3x, Δq1, Δq2, Δq3, Δψ3 = constructtestfields_3layer(gr)
Expand Down Expand Up @@ -237,9 +237,9 @@ function test_mqg_nonlinearadvection_2layers(dt, stepper, dev::Device=CPU())
k₀, l₀ = 2π/gr.Lx, 2π/gr.Ly # fundamental wavenumbers

nlayers = 2 # these choice of parameters give the
f₀, g = 1, 1 # desired PV-streamfunction relations
f₀ = 1 # desired PV-streamfunction relations
H = [0.2, 0.8] # q1 = Δψ1 + 25*(ψ2-ψ1), and
ρ = [4.0, 5.0] # q2 = Δψ2 + 25/4*(ψ1-ψ2).
b = [-1.0, -1.2] # q2 = Δψ2 + 25/4*(ψ1-ψ2).

β = 0.35

Expand Down Expand Up @@ -282,7 +282,7 @@ function test_mqg_nonlinearadvection_2layers(dt, stepper, dev::Device=CPU())
return nothing
end

prob = MultiLayerQG.Problem(nlayers, dev; nx, ny, Lx, Ly, f₀, g, H, ρ, U,
prob = MultiLayerQG.Problem(nlayers, dev; nx, ny, Lx, Ly, f₀, H, b, U,
eta=η, β, μ, ν, nν, calcFq=calcFq!, stepper, dt)

sol, cl, pr, vs, gr = prob.sol, prob.clock, prob.params, prob.vars, prob.grid
Expand Down Expand Up @@ -323,11 +323,11 @@ function test_mqg_nonlinearadvection_3layers(dt, stepper, dev::Device=CPU())
x, y = gridpoints(gr)
k₀, l₀ = 2π/gr.Lx, 2π/gr.Ly # fundamental wavenumbers

nlayers = 3 # these choice of parameters give the
f₀, g = 1, 1 # desired PV-streamfunction relations
H = [0.25, 0.25, 0.5] # q1 = Δψ1 + 20ψ2 - 20ψ1,
ρ = [4.0, 5.0, 6.0] # q2 = Δψ2 + 20ψ1 - 44ψ2 + 24ψ3,
# q3 = Δψ3 + 12ψ2 - 12ψ3.
nlayers = 3 # these choice of parameters give the
f₀ = 1 # desired PV-streamfunction relations
H = [0.25, 0.25, 0.5] # q1 = Δψ1 + 20ψ2 - 20ψ1,
b = [-1.0, -1.2, -1.2-1/6] # q2 = Δψ2 + 20ψ1 - 44ψ2 + 24ψ3,
# q3 = Δψ3 + 12ψ2 - 12ψ3.

β = 0.35

Expand Down Expand Up @@ -375,7 +375,7 @@ function test_mqg_nonlinearadvection_3layers(dt, stepper, dev::Device=CPU())
return nothing
end

prob = MultiLayerQG.Problem(nlayers, dev; nx, ny, Lx, Ly, f₀, g, H, ρ, U,
prob = MultiLayerQG.Problem(nlayers, dev; nx, ny, Lx, Ly, f₀, H, b, U,
eta=η, β, μ, ν, nν, calcFq=calcFq!, stepper, dt)

sol, cl, pr, vs, gr = prob.sol, prob.clock, prob.params, prob.vars, prob.grid
Expand Down Expand Up @@ -426,9 +426,9 @@ function test_mqg_linearadvection(dt, stepper, dev::Device=CPU();
k₀, l₀ = 2π/gr.Lx, 2π/gr.Ly # fundamental wavenumbers

nlayers = 2 # these choice of parameters give the
f₀, g = 1, 1 # desired PV-streamfunction relations
f₀ = 1 # desired PV-streamfunction relations
H = [0.2, 0.8] # q1 = Δψ1 + 25*(ψ2-ψ1), and
ρ = [4.0, 5.0] # q2 = Δψ2 + 25/4*(ψ1-ψ2).
b = [-1.0, -1.2] # q2 = Δψ2 + 25/4*(ψ1-ψ2).

β = 0.35

Expand Down Expand Up @@ -471,7 +471,7 @@ function test_mqg_linearadvection(dt, stepper, dev::Device=CPU();
return nothing
end

prob = MultiLayerQG.Problem(nlayers, dev; nx, ny, Lx, Ly, f₀, g, H, ρ, U,
prob = MultiLayerQG.Problem(nlayers, dev; nx, ny, Lx, Ly, f₀, H, b, U,
eta=η, β, μ, ν, nν, calcFq=calcFq!, stepper, dt, linear=true)

sol, cl, pr, vs, gr = prob.sol, prob.clock, prob.params, prob.vars, prob.grid
Expand Down Expand Up @@ -509,11 +509,11 @@ function test_mqg_energies(dev::Device=CPU();
k₀, l₀ = 2π/gr.Lx, 2π/gr.Ly # fundamental wavenumbers
nlayers = 2

f₀, g = 1, 1
H = [2.5, 7.5] # sum(params.H) = 10
ρ = [1.0, 2.0] # Make g′ = 1/2
f₀ = 1
H = [2.5, 7.5] # sum(params.H) = 10
b = [-1.0, -1.5] # Make g′ = 1/2

prob = MultiLayerQG.Problem(nlayers, dev; nx, ny, Lx, Ly, f₀, g, H, ρ)
prob = MultiLayerQG.Problem(nlayers, dev; nx, ny, Lx, Ly, f₀, H, b)
sol, cl, pr, vs, gr = prob.sol, prob.clock, prob.params, prob.vars, prob.grid

ψ = zeros(dev, eltype(gr), (gr.nx, gr.ny, nlayers))
Expand Down Expand Up @@ -573,13 +573,13 @@ function test_mqg_fluxes(dev::Device=CPU(); dt=0.001, stepper="ForwardEuler", n=
k₀, l₀ = 2π/gr.Lx, 2π/gr.Ly # fundamental wavenumbers

nlayers = 2 # these choice of parameters give the
f₀, g = 1, 1 # desired PV-streamfunction relations
f₀ = 1 # desired PV-streamfunction relations
H = [0.2, 0.8] # q1 = Δψ1 + 25*(ψ2-ψ1), and
ρ = [4.0, 5.0] # q2 = Δψ2 + 25/4*(ψ1-ψ2).
b = [-1.0, -1.2] # q2 = Δψ2 + 25/4*(ψ1-ψ2).
U = zeros(ny, nlayers)
U[:, 1] = @. sech(gr.y / 0.2)^2

prob = MultiLayerQG.Problem(nlayers, dev; nx, ny, Lx, Ly, f₀, g, H, ρ, U)
prob = MultiLayerQG.Problem(nlayers, dev; nx, ny, Lx, Ly, f₀, H, b, U)

sol, cl, pr, vs, gr = prob.sol, prob.clock, prob.params, prob.vars, prob.grid

Expand Down Expand Up @@ -645,11 +645,11 @@ function test_mqg_setqsetψ(dev::Device=CPU(); dt=0.001, stepper="ForwardEuler",
k₀, l₀ = 2π/gr.Lx, 2π/gr.Ly # fundamental wavenumbers

nlayers = 2 # these choice of parameters give the
f₀, g = 1, 1 # desired PV-streamfunction relations
f₀ = 1 # desired PV-streamfunction relations
H = [0.2, 0.8] # q1 = Δψ1 + 25*(ψ2-ψ1), and
ρ = [4.0, 5.0] # q2 = Δψ2 + 25/4*(ψ1-ψ2).
b = [-1.0, -1.2] # q2 = Δψ2 + 25/4*(ψ1-ψ2).

prob = MultiLayerQG.Problem(nlayers, dev; nx, ny, Lx=L, f₀, g, H, ρ)
prob = MultiLayerQG.Problem(nlayers, dev; nx, ny, Lx=L, f₀, H, b)

sol, cl, pr, vs, gr = prob.sol, prob.clock, prob.params, prob.vars, prob.grid

Expand Down Expand Up @@ -692,9 +692,9 @@ function test_mqg_set_topographicPV_largescale_gradient(dev::Device=CPU(); dt=0.
k₀, l₀ = 2π/gr.Lx, 2π/gr.Ly # fundamental wavenumbers

nlayers = 2 # these choice of parameters give the
f₀, g = 1, 1 # desired PV-streamfunction relations
f₀ = 1 # desired PV-streamfunction relations
H = [0.2, 0.8] # q1 = Δψ1 + 25 * (ψ2 - ψ1), and
ρ = [4.0, 5.0] # q2 = Δψ2 + 25/4 * (ψ1 - ψ2).
b = [-1.0, -1.2] # q2 = Δψ2 + 25/4 * (ψ1 - ψ2).
U = zeros(nlayers) # the imposed mean zonal flow in each layer
U[1] = 1.0
U[2] = 0.0
Expand All @@ -712,13 +712,13 @@ function test_mqg_set_topographicPV_largescale_gradient(dev::Device=CPU(); dt=0.
eta = f₀ * h / H[2]

prob = MultiLayerQG.Problem(nlayers, dev;
nx, ny, Lx=L, Ly=L, f₀, g, H, ρ, U, μ, β=0, T, eta,
nx, ny, Lx=L, Ly=L, f₀, H, b, U, μ, β=0, T, eta,
topographic_pv_gradient = f₀ / H[2] .* (topographic_slope_x, topographic_slope_y),
dt, stepper, aliased_fraction=0)

# Test to see if the internally-computed total bottom Qx and Qy are correct

g′ = g * (ρ[2] - ρ[1]) / ρ[2]
g′ = -(b[2] - b[1])
F1 = f₀^2 / (H[2] * g′)
Psi1y, Psi2y = -U[1], -U[2]

Expand All @@ -742,9 +742,9 @@ function test_mqg_paramsconstructor(dev::Device=CPU(); dt=0.001, stepper="Forwar
gr = TwoDGrid(dev; nx, Lx=L, ny, Ly=L)

nlayers = 2 # these choice of parameters give the
f₀, g = 1, 1 # desired PV-streamfunction relations
f₀ = 1 # desired PV-streamfunction relations
H = [0.2, 0.8] # q1 = Δψ1 + 25*(ψ2-ψ1), and
ρ = [4.0, 5.0] # q2 = Δψ2 + 25/4*(ψ1-ψ2).
b = [-1.0, -1.2] # q2 = Δψ2 + 25/4*(ψ1-ψ2).

U1, U2 = 0.1, 0.05

Expand All @@ -758,8 +758,8 @@ function test_mqg_paramsconstructor(dev::Device=CPU(); dt=0.001, stepper="Forwar
CUDA.@allowscalar Ufloats[1] = U1
CUDA.@allowscalar Ufloats[2] = U2

probUvectors = MultiLayerQG.Problem(nlayers, dev; nx, ny, Lx=L, f₀, g, H, ρ, U=Uvectors)
probUfloats = MultiLayerQG.Problem(nlayers, dev; nx, ny, Lx=L, f₀, g, H, ρ, U=Ufloats)
probUvectors = MultiLayerQG.Problem(nlayers, dev; nx, ny, Lx=L, f₀, H, b, U=Uvectors)
probUfloats = MultiLayerQG.Problem(nlayers, dev; nx, ny, Lx=L, f₀, H, b, U=Ufloats)

return isapprox(probUfloats.params.U, probUvectors.params.U, rtol=rtol_multilayerqg)
end
Expand Down